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Università di Milano

Italia

capra@di.unimi.it

Massimiliano De Pierro,
Dipartimento di Informatica

Università di Torino
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1. Introduction

The work presented in this report concerns the most recent developments of a calculus used to derive
(mainly structural) properties of Symmetric Nets (SNs), formerly known as Well-Formed Nets (WN)[6],
a kind of High Level Petri Net formalism introduced about 30 years ago, for which several efficient
analysis algorithms and tools have been developed. The most relevant feature of SNs is the possibility
to represent in a quite natural way systems with symmetric structure and behavior, and to exploit such
characteristics to efficiently analyse SN models. This feature extends to Stochastic SNs (SSNs), an ex-
tension of the formalism allowing to generate a stochastic process (precisely a Continuous Time Markov
Chain - CTMC) from an high level SSN model representation, and to automatically reduce the state
space exploiting the model symmetries.
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The calculus that is being extended in this report was introduced about 15 years ago[7, 4, 3], with
the aim of efficiently computing useful structural properties of SNs, representing them in a symbolic and
compact form. A SN model consists of places (modeling the state) and transitions (modeling activities
and events) connected by arcs decorated with arc expressions. The calculus proposed in this report allows
to manipulate and combine the arc expressions through operators like the transpose, the composition or
the intersection, in order to derive new expressions representing various structural properties in symbolic
form[5]. The calculus is parametric in the size of color classes: this allows to obtain results that are
valid for a whole family of models. The underlying language resembles the arc expressions language
and extends it by including filters (similar to guards but left-composed with tuples) and intersection of
basic SN functions. The calculus has been implemented in a library whose functions can be accessed
through a command-line interface: the tool1 is called SN-expression[8, 5]. Finally it has been shown
that this calculus can also be useful when solving models with very large state spaces using a set of
ordinary differential equations: the intrinsic symmetries of these models can be exploited to generate a
reduced set of equations allowing to derive the same results that could be obtained from the complete set
of equations [2, 1] with a reduced computation effort.

The present work completes the rules to solve the composition of any pair of function tuples mapping
on sets and in some case also on multisets. It is organized as follows: in Section 2 the main definitions an
notations used throghout the report and the language used to compute structural relations are introduced,
in Section 3 some preliminary notions on the method used to transform expressions through appropriate
rewriting rules is discussed, and some expression forms with specific properties (needed in the next
section) are introduced. Section 4 is the core of the paper and discusses the different possible cases
arising when composing two tuples (with both guards and filters): the rewriting rules may in some case
require an operation of tuple expansion before composing and successive projection to obtain the final
result. In Section 5 we summarize the results presented in the report, provide hints on its applicative
relevance and discuss possible future works. In the Appendix some rewriting rules already presented in
previous publications are reported, to make the report self-contained, moreover a new rewriting rule is
proposed that may conveniently replace a set of other rules illustrated in the report; the choice of the rule
to apply in practice can then be driven by efficiency considerations.

2. Main definitions and notations

2.1. Symmetric Nets

In this section the SN formalism is briefly presented through the example in Fig.1 and the notation used
throughout the paper is introduced (the syntax and notation is summarized in Table 1). The SN formal-
ism is an High-level Petri Net (HLPN) formalism with syntax constraints that allow to automatically
discover and exploit symmetries in the model behavior. Being a HLPN formalism, it features para-
metric and compact modeling of systems composed of several similarly behaving elements, as well as
an intuitive graphical representation in the form of a bipartite graph. A SN model state is represented
through the colored marking of places, while the possible state changes are represented by transition
instances (which are pairs: transition, binding). Places are graphically represented by circles, annotated
with the corresponding color domain (denoted C(p)). Transitions are represented by (black or white)

1SNexpression can be downloaded from www.di.unito.it/∼depierro/SNex.
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Figure 1: A simple SN example.

rectangles; each transition has an associated set of typed variables and a predicate (called transition
guard) which together define its color domain. Places and transitions are nodes of a graph, and are con-
nected through arcs annotated with functions, represented in the form of expressions whose terms are
(weighted and guarded) tuples of basic functions (the tuple notation stands for the Cartesian product of
its elements). Transition guards are boolean expressions built on standard predicate terms. Place and
transition color domains are defined in terms of basic color classes which are disjoint, finite not empty
sets. Let us consider the model in Fig.1: it comprises place Sites with color domain C1, T-buffer and
R-buffer with color domain C1 × C1 × C2, where C1 = {s1, . . . , sk} and C2 = {d1, . . . , dh, a} are
basic color classes: the former represents a set of sites that can exchange messages, the latter repre-
sents messages exchanged by sites, and is partitioned into two static subclasses, C2,1 = {d1, . . . , dh, }
representing data messages and C2,2 = {a} representing an acknowledge message. The marking of
a place is a multiset of colored tokens (i.e. a set with possible repetition of tokens with same color)
from the corresponding color domain (the set of all multisets that may be markings of p is denoted
Bag[C(p)]). The transitions of the SN in Fig.1 are TxMsg, whose variables are X1

1 and X2
1 both of

type C1 (indicated by the subscript 1, and distinguished by means of the superscript), and with guard
[X1

1 6= X2
1 ], RxMsg, whose variables are X1

1 , X2
1 both of type C1 and X1

2 of type C2, and with guard
[X1

2 ∈ C2,1]. Transitions TxAck and RxAck have a constant guard true and two variables of type
C1. Summarizing, C(TxMsg) = {〈si, sj〉 ∈ C1 × C1} with the constraint i 6= j due to the predicate
Φ(TxMsg) = [X1

1 6= X2
1 ]; C(RxMsg) = {〈si, sj ,m〉 ∈ C1 × C1 × C2} with the constraint m ∈ C2,1

due to the predicate Φ(RxMsg) = [d(X1
2 ) = C2,1]. Finally C(TxAck) = C(RxAck) = C1 × C2.

A binding of a given transition is an association of colors to its variables (from the appropriate basic
color class), it leads to a valid transition instance only if it satisfies the guard. A pair transition-binding
is called transition instance: an example of transition instance is (TxMsg,〈X1

1 = s1, X
2
1 = s2〉), which

is valid because it satisfies the transition guard [X1
1 6= X2

1 ]. Arc functions in this example have all
only one term which is a tuple of basic functions: projection Xj

i or diffusion/synchronization SCi , SCi,j

(which is a constant function returning a whole color class or static subclass). The tuple notation should
be interpreted as Cartesian product of the tuple elements: hence the evaluation of a function tuple is
the Cartesian product of the evaluation of its elements. The domain of an arc function is the color
domain of the transition connected to the arc, its codomain is Bag[C(p)] where p is the place connected
to the arc. The arc function 〈X1

1 , X
2
1 , SC2,1〉 on the output arc from TxMsg evaluated on the binding

〈X1
1 = s1, X

2
1 = s2〉 returns the set {〈s1, s2, d1〉+ . . .+ 〈s1, s2, dh〉} (= {s1} × {s3} × C2,1). SN arc
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functions and guards syntax is formally defined in Sec. 2.2.
Any SN model can be unfolded into an equivalent PN model, it is thus possible to apply any exist-

ing PN analysis algorithm to the unfolded model, however this approach has three drawbacks: (1) the
unfolded model may be huge, (2) the unfolding requires to fix the color class size, hence it is inherently
less parametric, and (3) the unfolded model does not allow to exploit the symmetries possibly present in
the model to improve the analysis efficiency.

The dynamic behavior of a SN model can be expressed through its Reachability Graph (RG): the
latter can be finite or infinite. Starting from the initial marking the RG can be obtained by following
the possible execution paths that originate from the initial marking m0: the set of transition instances
that are enabled in m0 is first established, then one of them is fired (according to some selection criteria)
leading to a new marking. The set of enabled transition instances in any marking and the effect of firing
a given enabled transition instance (i.e. the marking reached after such firing) depend on the marking
of the input and inhibitor places and on the functions appearing on all arcs connected to the transitions.
For instance, assuming that initially place Sites contains the set C1 while the others are empty, there are
|C1|(|C1|−1) instances of TxMsg enabled in the initial marking, with bindingX1

1 = si, X
2
1 = sj ,∀i, j ∈

1, . . . ,m, i 6= j. After the firing of one such instance, say (TxMsg,〈X1
1 = s1, X

2
1 = s3〉), one token

with color s1 is withdrawn from place Sites (due to function 〈X1
1 〉 on the arc) and |C2| − 1 tokens with

colors 〈s1, s3, d1〉, . . . , 〈s1, s3, dh〉 are added in place T-buffer. Observe that in the new marking m1

only a subset of the instances of TxMsg initially enabled are still enabled: in fact all the instances with
X1

1 bound to s1 are no more enabled because they were in (effective) conflict with the instance that fired
in m0. In the new marking, (|C1| − 1)(|C1| − 1) instances of TxMsg, and |C2,1| instances of RxMsg
are enabled, with binding X1

1 = s1, X
2
1 = s3, X

1
2 = dj one for each token 〈s1, s3, dj〉 in T-buffer. If

all the instances of RxMsg enabled in m1 fired, one after the other, then the newly reached marking mi

would have no more tokens in T-buffer, and the same set of tokens initially in T-buffer would now be in
R-buffer. In marking mi one instance of TxAck is enabled, with binding X1

1 = s1, X
2
1 = s3: observe

that the arc function 〈X1
1 , X

2
1 , SC2,1〉 appearing on the transition input arc implements a synchronization

of all the messages initially sent out by transition instance (TxMsg,〈X1
1 = s1, X

2
1 = s3〉) to reply

with an acknowledge message to the site who initiated the communication. Observe that the instance of
RxMsg moving the last token (message) from T-buffer to R-Buffer is in (effective) causal connection
with TxAck (i.e. it causes one instance of TxAck to become newly enabled): also for this relation
there exists a structural necessary condition. The a-priori knowledge of the structural conflict and causal
connection relations may be fruitfully exploited to speed up the RG generation or the simulation of the
SN model, or to support the modeler in the verification of model consistency (e.g. by checking certain
marking invariants), or in the complete specification of the some model parameters (e.g. transition rates
or weights and priorities, when the model is used to generate a stochastic process: this extension is known
under the name of Stochastic Symmetric Nets SSN). The calculus proposed in the rest of this paper has
several possible applications, among which the computation of the above mentioned structural relations
in a concise and parametric form.
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Table 1: SN NOTATION

N = {P, T,Σ,C,Φ,W−,W+,W h,m0} A symmetric net
T A finite set of transitions;
P A finite set of places;
T ∪ P (P ∩ T = ∅) The set of the nodes of the net;
C1, C2, . . . , Cn Finite sets of colors called basic color classes;
Ci,j , i ∈ {1 . . . ||Ci||} When a basic color class Ci is partitioned into static sub-

classes, Ci,j is its j-th subclass;
||Ci|| Number of static subclasses in which Ci is partitioned
Σ = {C1, C2, . . . , Cn} The set of the basic color classes;
Ce11 × Ce22 × . . . Cenn A color domain: ei is the multiplicity of color class Ci in

the domain.
C(s) ∀s ∈ T ∪ P Color domain of node s. Shortly it will be referred as “the

domain of s”
Φ Transition predicates (constraints on a transition color do-

main)
Bag[D] Set of all multisets defined on set D
m ∈ Bag[C(p)] A multisets on the color domain of place p denoted with

m stands for a place marking.
W−(t, p),W+(t, p),W h(t, p) Functions labeling respectively the input, output and in-

hibitor arcs of a given transition t ∈ T ; they have domain
C(t) and codomain Bag[C(p)], hence for any given bind-
ing c of t they return a multiset in Bag[C(p)].

Xj
i , SCi , SCi,j , !X

j
i SN basic functions: it is a limited set of functions defined

on a color domain of a transition t with values into a basic
color class, C(t)→ Bag[Ci]

Xj
i = Xk

i , X
j
i 6= Xk

i
Basic predicates: simple assertions built on SN basic
functions. They test the (dis)equality of transition variable
binding or the inclusion of the value bound to a given vari-
able in a static subclasses(d(Xj

i ) denotes the static sub-
class of the value bound to variable Xj

i ).

d(Xj
i ) = d(Xk

i )

d(Xj
i ) 6= d(Xk

i )

d(Xj
i )=Ci,k, d(Xj

i ) 6=Ci,k

Φ(t) a transition predicate is a boolean expression whose terms
are basic predicates.

[p] A guard: p is a boolean expression whose terms are basic
predicates. A guard [p] is function that maps each color
c ∈ C(t) in {c} if p(c) evaluates to true, in ∅ otherwise.
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2.2. SN arc functions formal definition

The SN formalism defines a precise syntax to express arc functions W−, W+ and W h. A SN function
W labeling an (input, output or inhibitor) arc connecting transition t and place p, is a mapping W :
C(t)→ Bag[C(p)] whose form is:

W =
∑
i

λi.Ti[pi], λi ∈ N

In words, we say that W is a weighted sum of guarded function tuples. Function tuple domain and
codomain (consistently with the definition of W ) are Ti : C(t)→ Bag[C(p)]. The sum is a multiset sum
and λi are scalars. Guard [pi] associated with Ti has the following interpretation: Ti[pi](c) is equal to
Ti(c) if pi(c) = true, otherwise it is equal to ∅. Both the predicates and the elements of the function
tuples have a precise syntax which is discussed next.
Syntax of function-tuples. A function-tuple T , denoted by 〈f1, . . . , fk〉, corresponds to the Cartesian
product of functions fi called class-functions. Each class-function fi maps the elements of C(t) into the
elements of Bag[Cj ] for some j ∈ {1, . . . , n}. The angular brackets indicate the Cartesian product of
the elements of the tuple thus the application of tuple T to color c ∈ C(t) results in T (c) = ⊗ki=1fi(c)
where ⊗ is the multiset Cartesian product operator. Thus Ti(c) ∈ Bag[C(p)]

The components fi of a tuple T are linear combinations with coefficients in Z of basic functions,
namely:

fi =

ej∑
k=1

αk.X
k
j +

||Cj ||∑
q=1

βq.SCj,q +

ej∑
k=1

γk.!X
k
j , αk, βk, γk ∈ Z (1)

where Xk
j , !X

k
j , SCj , SCj,k

are the basic functions and represent the limited set of symbols upon which
class-functions are defined. The basic functions have the following semantics:

Xk
j Is called projection: it selects the value associated with the k-th variable

of type Cj in the transition binding;
!Xk

j Is called successor: if class Cj is circularly ordered it selects the suc-
cessor of the value associated with the k-th variable of type Cj in the
transition binding;

Sj , Sj,k Are constant functions called diffusion/synchronization: they maps re-
spectively into the colorset Cj and Cj,k. Observe that the following
equivalence holds: SCj =

∑
k SCj,k

.

In (1) scalars must be such that no negative coefficient result from the evaluation of fi for any color
(consistent with the guard possibly associated with the function-tuple or transition).

In general, if class Cj is ordered, then it cannot be partitioned in subclasses. This restriction could
be relaxed for ordered color classes only when each element in the class belongs to a different static
subclass, i.e. ∀k |Cj,k| = 1.
Guards. Guards in SSN models are boolean expressions whose terms are basic predicates: the set of
basic predicates is summarized in Tab. 1. The basic predicates allow to check whether two variables are
associated with the same value in a given binding, or in case of ordered classes if they are associated
with values that can be related through the successor function; it is also possible to check if the value
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associated with a variable belongs to a given static subclass or if two variables have values in the same
or different static subclass. There is no possibility to explicitly refer to a specific color (unless it is the
only element of a static subclass).

Guards can be applied to transitions or to function tuples within arc functions. When applied to
transitions the effect of a guard is to restrict color domain C(t). When applied to a function tuple, the
effect of a guard is to make it evalutate to the empty set when the guard is false. If for a given transition
binding all function tuples composing a given arc expression are annulled by their guards, the effect is
equivalent to deleting the arc.

Table 1 summarizes the SN notation used througout the paper.

2.3. The language for the symbolic calculus

This section formally introduces the syntax of the expressions on which the calculus is based.
They are very similar to the SN arc functions introduced in the previous section but with some

variations and extensions, such as the introduction of the intersection operator and of the filters. Before
presenting the calculus expressions let us introduce the linear extension of SN functions and a different
interpretation of guards associated with function tuples.

Linear extension of SN functions. Let F : C(t) → Bag[D] be a SN function tuple, class function or
elementary function, then F ∗ : Bag[C(t)] → Bag[D] is defined in the following way: F ∗(a + b) =
F (a) + F (b), F ∗(λ.a) = λ.F (a), F ∗(0) = 0 for each a, b ∈ C(t), λ ∈ N and where 0 is the empty
multiset. Abusing notation in the remainder of the paper we shall use the same symbols to denote SN
functions and their linear extensions. When needed we use the term linear function to make it clear that
we are using the linear extension of the same function.

Interpreting SN guards as functions. Let D be a color domain, a guard can be interpreted as a function
[p] : Bag[D]→ Bag[D] such that [p](S) = {c ∈ S : p(c) = true}, ∀S ∈ Bag[D] and [p](∅) = ∅. The
expression T [p], used in SN to express a guarded function tuple can thus be reinterpreted as composition
of two functions: T ◦ [p], where T : Bag[D]→ Bag[D′].
Extension with filters. Exploiting the above interpretation of guards, it is possible to extend the SN
arc functions by allowing the application of a guard after the application of the function tuple (left
composition of a guard): [p] ◦ T . A guard left composed with a function tuple is called filter.

Composition operator ◦ between a tuple-function and its guard or filter will be hereafter omitted
except in those situations where we want to stress the actual computation of such composition under the
framework of the calculus.

We are now ready to introduce the language of the calculus expressions: it is closed with respect to a
number of operators that will be introduced later on, and upon which the algorithms for the computation
of SN structural properties are based.

Let f and g be two class-functions with same domain Bag[D] and with codomain Bag[Ci]. Assume
m ∈ Bag[D] and m =

∑
j λj .cj . The function intersection f ∩ g is a linear function from Bag[D] to

Bag[Ci] so defined f ∩ g(m) =
∑

j λj .f∩g(cj) =
∑

j λj .f(cj)∩g(cj), ∀m ∈ Bag[D], where the ∩
on the right side is the multiset intersection.

Definition 2.1. (Language L)
Let
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- D = Ce11 × Ce22 × ...× Cenn , e∗ ∈ N be any color domain;

- S =
{
Xj
i , Si, S−X

j
i , Si,k, !

mXj
i , S−!mXj

i

}
, i : 1, . . . , n, j : 1, . . . , ei, k : 1, . . . , ||Ci||, m ∈ Z;

is the set of elementary (class) functions; these are functions Bag(D) → Bag[Ci], and they
correspond to the linear extension of the corresponding (class) functions used in SN expressions,
with the following semantics for the m− th successor/predecessor functions (reserved to ordered
classes): if m = 0, !mXj

i = Xj
i , if m > 0, !mXj

i is equivalent to the application of the successor
functionmmod |Ci| times, finally ifm < 0, !mXj

i is equivalent to the application of the successor
function (m+K|Ci|) times, where K is the smallest natural number such that (m+K|Ci|) > 0.

- Tj = 〈f1, . . . fl〉 Bag[D] → Bag[D′], and ∀r ∈ {1, . . . , l}, fr =
∑

j Γi,j where i ∈ {1, . . . , n}
and Γi,j is any intersection of symbols in S with the same class subscript i;

- [g′j ] and [gj ] be SN guards on D′ and D, respectively.

The set of expressions:

L =
{
E : E =

∑
j

[g′j ]λjTj [gj ]
}
, λj ∈ N

is the language used to express SN structural relations.

It can be proven that any SN arc-function can be re-written using the syntax of the expressions pro-
vided by the above definition: let us illustrate the correspondence on a few examples (the expressions on
the left can be used in SN arc functions but are not valid expressions in L):
〈2.S1 −X1

1 −X2
1 〉 ≡ 〈(S−X1

1 ) + (S−X2
1 )〉;

〈Si,q −Xj
i 〉[d(Xj

i ) = Ci,q] = 〈(Si −Xj
i ) ∩ Si,q〉[d(Xj

i ) = Ci,q];
〈S1 −X1

1 −X2
1 〉[X1

1 6= X2
1 ] ≡ 〈(S−X1

1 ) ∩ (S−X2
1 )〉[X1

1 6= X2
1 ].

Language L without filters is equivalent to that used to express SN arc functions, and the equivalence
depends on the restriction introduced in the formal definition of SN functions that requires no negative
coefficients appearing in a SN function evaluation for any color: indeed in the second and third example
above the guard was needed to satisfy such restriction. The possibility of using filters instead makes
language L strictly more powerful than that of SN arc functions: for instance the expression [X1

1 6=
X2

1 ] < S, S > cannot be expressed in this compact form through the SN syntax.
Hereafter we shall use the term complement to denote elementary function S −Xj

i . In some cases,
to keep notation simpler, we shall use the extended complement expression S1−X1

1 −X2
1 as a shorthand

notation for an intersection of complements (S−X1
1 ) ∩ (S−X2

1 ).

2.4. Expressing structural properties in SN

Some properties of PN models can be derived directly from the net structure. The corresponding analysis
techniques are indicated with the term structural analysis to stress the fact that they are purely based
on the net structure, and do not depend on the dynamic evolution of the model through the reachable
markings. Examples of structural analysis techniques are: P and T-invariants derivation or verification
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DA RIFARE - PRESA DA esempi - rinominare t1 con TxMsg

Figure 2: unfolding of transition TxMsg with respect to input place Sites

and computation of relations between nodes of the net (e.g. structural causal connection, structural
conflict or structural mutual exclusion between transition pairs).

In this section the general definition of structural relations in High Level Petri Net models, extending
the corresponding (basic) relations in PN models, is provided. They correspond to a folded representation
of the basic structural relations on the underlying unfolded PN model.

Definition 1. [Symbolic relation] Given a binary relation R between the color instances of nodes s and
s′ of a CPN model defined as R ⊆ (s×C(s))× (s′×C(s′)), its symbolic representation denoted R(s, s′)
is a mapping from C(s′) to 2C(s) such that R(s, s′)(c′) = {c : (s, c)R(s′, c′)} for each c′ ∈ C(s′).

It is interesting to observe that the structural relations of any SN model can be expressed in a symbolic
form similar to that used to specify the SN arc expressions, presented in Sec. 2.1. To clarify the above
statement let us consider an example of symbolic structural conflict between a pair of colored transitions
of a SN model, and explain how it relates to the basic structural relation between instances of the same
two transitions in the underlying unfolded model.

In the SN model in Fig. 1 let us consider the structural conflict between different instances of the
colored transition TxMsg with respect to place Sites. Fig. 2 shows the unfolded subnet corresponding to
transition TxMsg and place Sites. If we pick any instance (TxMsg, 〈X1

1 = t,X2
1 = r〉), 〈t, r〉 ∈ C1×C1

it is clear that it might be disabled by any (TxMsg, 〈X1
1 = t,X2

1 = r′〉) with r′ 6= t and r′ 6= r, assuming
that |C1| ≥ 3 (there are at least three sites in the system). We could thus say that for any t, r ∈ C1, t 6= r
it holds true

(TxMsg, 〈X1
1 = t,X2

1 = r′〉) SC (TxMsg, 〈X1
1 = t,X2

1 = r〉), ∀r′ : r′ 6= t ∧ r′ 6= r.

In the actual model this can be interpreted as follows: in each cycle a sender transmits the message to only
one among the possible receivers, hence all instances are in mutual conflict. It is possible to express such
statement in a compact and symbolic form using the SN arc functions syntax. The symbolic structural
relation is denoted SC(TxMsg,TxMsg and it is possible to show that it can be expressed as a function
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with the following syntax:

SC(TxMsg,TxMsg) =

{
〈X1

1 , S−X1
1−X2

1 〉[X1
1 6= X2

1 ] |C1| ≥ 3

〈0, 0〉 |C1| = 2

Indeed, given any instance of TxMsg: 〈t, r〉 ∈ C1×C1, the function evaluation gives SC(TxMsg,TxMsg)(〈t, r〉 =
〈t, C1− t− r〉[t 6= r] which is equivalent to the expression given on the unfolded model (it is equivalent
in the sense that it identifies the same set of conflicting instances).

Main structural relations. The following table collects several of the most common SSN symbolic
structural relations with their meanings.

SbT (p, t) SubtractedbyTransition: provides the set of tokens an instance of t
withdraws from p

SfP (t, p) SubtractedfromPlace: given a color of p it provides the color in-
stances of t that withdraw it

AbT (p, t) AddedbyTransition: provides the set of tokens an instance of t pro-
duces in p

AtP (t, p) AddedtoP lace: given a color of p it provides the color instances of t
that produce it in p

SC(t, t′) Structural Conflict between transition instances

SCC(t, t′) Structural Causal Connections between instances of t and t′

simpleSME(t, t′) Structural Mutual Exclusion

In the next sections it is shown how functional expressions for structural symbolic relations, as of the
type illustrated in the example and those in the table, can be obtained operating a given calculus directly
to the SSN arc functions. Before this, however several extensions and algebraic characterizations must
be done to the SSN definition of functions.

Computing structural relations: the operators of the calculus. Table 2 shows how to compute the
structural properties introduced in previous subsection ”Main structural relations”. As the formulas
show, structural symbolic relations are obtained from the arc functions by doing several calculations.
The following table summarizes the involved operators. In the list, symbols f and g are functions on
multisets.
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f Support operator: f is such that f(c) = {d ∈ f(c)}set, ∀c

f − g Difference operator: f − g is such that f−g(c) = f(c)− g(c) ∀c, where − on
the right side is the difference between multisets

f t Transpose operator: f t(c)(d) = f(d)(c)

f ◦ g Composition operator: it is the classical composition operator between func-
tions.

f ∪ g Union operator :where ∪ on the right side is the union between multisets

f ∩ g Intersection operator: where ∩ on the right side is the intersection between
multisets

¬g Complement operator

!kf Successor operator

Several of the listed operators, namely the support, the difference, and the transpose, have been
discussed in [3]. In this report we extensilvely discuss the composition operator which is fundamental
for the effective calculation of all structural relations.

Table 2: Computing structural properties in SSN.

SbT (p, t) = W−(t, p)−W+(t, p)

SfP (t, p) = W−(t, p)−W+(t, p)
t

= SbT (p, t)t

AbT (p, t) = W+(t, p)−W−(t, p)

AtP (t, p) = W+(t, p)−W−(t, p)
t

= AbT (p, t)t

SC(t, t′) =
⋃

p∈•t∩•t′ SfP (t, p) ◦W−(t′, p) ∪ ⋃p∈t•∩◦t′ SfP (t, p) ◦Wh(t′, p)

SC(t, t) =
⋃

p∈•t SfP (t, p) ◦W−(t, p)− Id ∪ ⋃p∈t•∩◦tAtP (t, p) ◦Wh(t, p)− Id
SCC(t, t′) =

⋃
p∈t•∩•t′ AtP (t, p) ◦W−(t′, p) ∪ ⋃p∈•t∩◦t′ SfP (t, p) ◦Wh(t′, p)

SMEsimple(t, t
′) =

⋃
p∈•t∩◦t′W

−(t, p)
t ◦Wh(t′, p) ∪ ⋃p∈◦t∩•t′W

h(t, p)
t ◦W−(t′, p)
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Table 3: MAIN NOTATIONS OF THE CALCULUS

L The language used to represents structural relations in SN (see
Def. 2.1);

l, li elements of language L;
Ω =

{
+,−, .t,∩, . , ◦

}
The operators on language L;

{L,Ω} The set of the expressions writable on language L applying the oper-
ators in Ω;

∅D→D′ the empty function on domain D and codomain D′;
SD→D′ the universe function on domain D and codomain D′;
e, e′, ei elements of {L,Ω};
T, Ti, T

′, . . . Function tuples;
f, fi, g, gi Class-functions, if not otherwise stated;
p, pi Predicates in filters and guards, if not otherwise stated;
f ∩ . . . Intersection form involving class-function f ;
p . . . Conjunctive form involving predicate p;
〈. . . , f, . . .〉 Tuple having class-function f as component;
〈. . . , fi, . . .〉 Tuple whose ith component is class-function fi;
〈fi〉⊗m

i: 1
, 〈fi〉⊗i i = 1, . . . ,m m-tuple of class-functions that are indexed on their position in the

tuple, index i can be omitted in some circumstances ;
〈f〉⊗m m-tuple formed exclusively by class-function f ;
Symb(f) {!hXi}, !hXi occurs on f (Xi ≡!0Xi);
V ar(g) {Xi}, !hXi ∈ Symb(g);
Idx(p) {i}, Xi ∈ V ar(p)
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3. The calculus as a parametric rewriting system

The computation of SN’s structural relations as illustrated in Tab. 2 has as consequence the necessity to
solve expressions e ∈ {L,Ω} that is expressions whose terms are in L and that may involve operators in
Ω. The calculus aims at transforming expressions e in order to remove all the operators and obtain in the
end an element l ∈ L. It is step by step driven by the application of given rewriting rules depending on
the form of the expression ei at step ith of the transformation

e
(0)→ e1

(1)→ . . .→ ei
(i)→ . . .→ l

The algorithm running the calculus doesn’t lead to a normal form for l. This last aspect is clarified in the
following definitions.

Definition 3.1. Let us assume l ∈ L and l′ ∈ L, then we say that l and l′ are equivalent, writing

l ≡ l′

iff l and l′ are defined on the same domain D and codomain D′and l(c) = l′(c), ∀c ∈ D.
≡ is an equivalence relation on L and (L,≡) is the partitioning it induces.
If l ∈ L, then [l] ∈ (L,≡) is the equivalence class of l, that is [l] = {l′ ∈ L : l ≡ l′}. We will

use ri ∈ L as representative to denote the generic element [ri] ∈ (L,≡). We introduce a notation to
to denote representatives for the empty and universe functions for given domain D and codomain D′,
namely [∅D→D′ ] will be used to denote the class of elements of L mapping into the empty set while
[SD→D′ ] will be used to denote the class of elements of L mapping each element of D into D′.

Relation ≡ can be extended (observe that L ⊂ {L,Ω}) on set {L,Ω} of expressions inducing
similarly the partitioning ({L,Ω},≡). Let ω ∈ Ω be an operator defined on L, then given two elements
of the language l1 ∈ L and l2 ∈ L resolving the operator in e : l1 ω l2 means finding l ∈ L such
that l ≡ l1 ω l2, that is [l] = [l1 ω l2] where both [l] and [l1 ω l2] are elements of ({L,Ω},≡). The
solution l may not be unique and it depends on the sequence of rewriting rules used in the intermediate
transformations.

The processing actuated to resolve an operator proceeds by steps, at each step an expression containing
an operator is syntactically rewritten according to its algebraic properties in order to arrive in a finite
time at a final expression in which no operators appear (except +). Each basic algebraic transformation
is denoted as a rewriting rule and is expressed in the following terms l1 ω l2 → e where e is either an
element of L or a calculus expression that still contains unresolved operators. A necessary condition to
guarantee the algorithm termination is that if an expression e encountered in the processing is such that
if [e] = [∅] or [e] = [S] then eventually, after some rewriting step, they become respectively e→ ∅D→D′
or e→ SD→D′ (observe that due to filters and guards e 6= ∅D→D′ and [e] = [∅D→D′ ] may hold).

Each rewriting rule definition will be univocally identified by a number on the right side of the
definition. The application of a rule in a calculus will be denoted by using its identifier between square
brackets in the rewriting step:

e
[n]−→ e′

Rewriting rules that are related will be collected in rule-sets. Use of rule-sets in a calculus skips over
the details of the intermediate expressions. Applications of rule-sets will be denoted using their name in
the rewriting step:
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e
[RS]−−−→ e′ .

Since the calculus is parametric in the color class cardinalities the right side of a rewriting rule
definition can be composed by several alternatives according to the values of the parameters. In this
case each alternative will be associated with a constraint on the range of the parameters representing the
cardinality of basic classes. Hereafter when the semantics of an expression depends on the basic classes
size we shall explicitly indicate the constraint.

Hereafter two particular forms for tuples and predicates are defined, required to apply some rewriting
rules defined in the following section.

A characterization of the tuples

In this section a specific form of expression equivalence class representative is introduced: this leads to a
fundamental characterization of tuples form that will be used later on to define some expression rewriting
rules to be used in the solution process.

Let us consider the following example of function l ∈ L: 〈S−X1
1 −X2

1 〉 This tuple can be rewritten
as: 〈S−X1

1 −X2
1 〉[X1

1 6= X2
1 ] + 〈S−X1

1 〉[X1
1 = X2

1 ]. The two guarded terms in the last expression are
such that for any value of their arguments satisfying the associated guard they map on a constant size set.
In the example the the first function S −X1

1 −X2
1 maps on a multiset of size |C1 − 2| while the second

function S −X1
1 maps on a multiset of size |C1 − 1|, for any value of X1

1 and X2
1 satisfying their guard.

For any equivalence class [l] it is always possible to find a representative with constant size terms.

Definition 3.2. (constant size function)
Function f with values in Bag[D] is constant size iff f(d) 6= ∅ implies |f(d)| = n, where n is a natural
number indicating the size (or cardinality) of the function.

Let us consider a class function fi composing a tuple T [g] ∈ L: it is constant size if fi(c′) = n, ∀c′ ∈
{c : g(c)}. Let us state a sufficient condition on the form of a class function ensuring that it is constant
size.

Property 1. Let us consider a class function fi appearing in a guarded tuple T [g]: A syntactical sufficient
condition for fi being constant size is: either fi belongs to S (Def. 2.1) or it has one of the following
forms

a)
⋂
q,j

S−!qXj
i b) Si,k

⋂
j

S −Xj
i

where in a) and b) for each pair !q1Xj1
i , !

q2Xj2
i s.t. j1 6= j2: g ⇒!q1Xj1

i 6=!q2Xj2
i , additionally in b) for

each Xj
i : g ⇒ d(Xj

i ) = Ci,k.

Of course a tuple composed of constant size class functions is also constant size. Proving the property
is a just a technical matter. Rewriting rules exist allowing to transform any tuple into a constant size
tuples: they are formalized in the Appendix. Let us just give the general idea through an example.
Consider the tuple 〈S − X1

1 − X2
1 , S1,2 − X1

1 〉 ≡ 〈S − X1
1 ∩ S − X2

1 , X
1
1 ∩ S1,2〉. In order to obtain

an equivalent constant size form we just have to discriminate whether X1
1 , X

2
1 are assigned the same

element or not, and represent the second intersection through a membership clause:

〈S −X1
1 ∩ S −X2

1 , X
1
1 〉[X1

1 6= X2
1 ∧ d(X1

1 ) = C1,2] + 〈S −X1
1 , X

1
1 〉[X1

1 = X2
1 ∧ d(X1

1 ) = C1,2]
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Our calculus is parametric in the basic classes cardinaly, e.g. in the first example |C1| = n1: in this
case n in Def. 3.2 is parametric. The form of the representative expression may change depending on
the parameter value. In the first example, assuming |C1| = n1 ≥ 2 there are two constant size forms,
one for n1 = 2 and another one for n1 ≥ 2:

F =

{
〈S −X1

1 〉[X1
1 = X2

1 ] n1 = 2

〈S −X1
1 −X2

1 〉[X1
1 6= X2

1 ] + 〈S −X1
1 〉[X1

1 = X2
1 ] n1 > 2

A characterization of predicates

In this section a specific form for the predicates used as guards or filters in the language expression: this
is a canonical form. Unless otherwise indicated, we focus on non trivial filters (i.e, filters not equivalent
to true or false) meeting the form below, hereinafter referred to as canonical

- filters are conjunctions of SN elementary guards

- (in)equalities take the form Xj
i = (6=)!kXh

i , with j < h

- if Xj
i =!rXh

i then Xh
i is not involved in any other equality and 6 ∃w, Xw

i =!kXj
i

- if Xj
i 6=!rXh

i then 6 ∃w, Xw
i =!kXh

i or Xw
i =!kXj

i

A filter’s canonical form results from replacing Xh
i with !−kXj

i , for any equality Xj
i =!kXh

i , recur-
sively. Here is an example of canonical rewriting of a filter.

[X1 6= X2∧!−1X1 = X4 ∧X4 6= X3] −→ [X1 6= X2 ∧X1 =!X4 ∧X1 6=!X3]

The rewriting rules to be applied for transforming any predicate to its canonical form are summarized
in the Appendix, ruleset[E].

4. Top-down rules to solve the composition of language expressions

This section describes the application of composition between elements of language L, introduced in
Def. 2.1. Some rewriting rules based on the algebraic properties of functions shall be introduced, allow-
ing to solve the following problem: l1 ◦ l2 ...−→ l, where l1, l2, l ∈ L.

4.1. Starting rules

The first rule is based on distribution of composition over union. In formulae:
l ◦ l′ = ∑i[.]λiTi[.] ◦

∑
j [.]λjT

′
j [.]→

∑
i,j

(
[.]λiTi[.] ◦ [.]λjTj [.]

)
[1]

the correctness of the transformation comes directly from the basic elements of Algebra.
Rule [1] is not final, in that, expression e at the right term of the rule is not an element l ∈ L. There

are two main operators requiring to be resolved, namely the sum of compositions. The problem requires
next to solve in order the following two subproblems:

A. composition between tuples, possibly with guards and/or filters;
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B. investigate a suitable and simplified form of union of terms: although the result provided to prob-
lem A could be already an element of L, in this step one tries to achieve a convenient form for the
result, that in general will be a simplified union of terms satisfying a given form.

The rest of this section focuses on the first subproblem (A), that is on the composition of tuples as
expressed in the summation at the right side of [1].

Each term in [1] can be rewritten joining the guard of the left-tuple with the filter of the right-tuple
by posing the two predicates in and. In other words, the following rule (that can be easily verified) holds
true:

[.]Ti[pi] ◦ [pj ]Tj [.]→ [.]Ti[pi ∧ pj ]Tj [.] [2]
The calculus can thus proceed in one of two different directions depending on the syntax of tuple Ti,

namely:

1. looking for an equivalent syntactical form of the function Ti[pi ∧ pj ] of rule [2] in which the inner
predicate [pi ∧ pj ] has been canceled. This problem has already been tackled in the solution of
other operators, where the possibility to represent a predicate of a guard within the tuple it has
proven useful. Precisely, it was possible in several cases, exploiting the class-function intersection
operator. We do not discuss further the validity of such rules here and the reader can find them
listed in Appendix under the rule-set [H]. In general each rule in set [H] has the form T [p]→ T ′.
Applying rules from rule-set [H] allows to rewrite the expression on the right of [2] as:

[a]Ti[p]Tj [b]
r−→ [a]T ′i ◦ Tj [b] , r ∈ [H]

after such rewriting the problem is conducted to that of composing simple tuples. The rules devel-
oped to deal with this case are discussed in Sec. 4.2;

2. If rules in set [H] are not applicable because of the form of Ti, then the filter/guard can not be
syntactically canceled and different rewriting steps than those in 1. have to be applied to obtain a
solution for the problem of composition. These cases are discussed in Sec. 4.3.

4.2. Composition between tuples T1 ◦ T2

If f is a function with domain D, its extension to domain 2D, denoted fext , is defined in terms of f in
the following way:

fext : fext(d)
def
=
⋃
d∈d

f(d), ∀d ∈ 2D (D1)

An operator ∗ on functions with domain D so defined f ∗ g(d) = f(d)∗ g(d) and d ∈ D, is naturally
extended to the functions with domain 2D in the following way:

fext ∗ gext(d)
def
= (f ∗ g)ext(d)

D1
=
⋃
d∈d

f ∗ g(d)
def
=
⋃
d∈d

f(d) ∗ g(d), ∀d ∈ 2D (D2)

The next property states a condition on fext and gext that if satisfied allows to solve the above
expression at the level of the extended functions:

fext ∗ gext(d) = fext(d) ∗ gext(d) (2)

if d is a set of one element d then the statement is directly verifiable following Definition D2. In
general (2) is not valid, however when the elements d ∈ d are structured (as it happens in our context
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where d is an element of a Cartesian product of basic sets) it can be proved that (2) is valid if f and g
depend on disjoint pieces of the element’s structure.

Property 2. (Distributivity Condition)
Let D be the Cartesian product D = 2S1 × . . .× 2Sn . Let f and g be linear functions defined on domain
D and with values in 2C . Let ∗ an operator defined on the set of linear functions L[D,C] and such that
it is distributive with regard to the sum in 2C . If it exists i such that, denoted with S = 2S1 × . . . × 2Si

and S′ = 2Si+1 × . . .× 2Sn , it holds

i. f(d× d′) = f(d× d′′) ∀d ∈ S and ∀d′,d′′ ∈ S′

ii. g(d′ × d) = g(d′′ × d) ∀d ∈ S′ and ∀d′,d′′ ∈ S
then

f ∗g (d) = f(d) ∗ g(d), ∀d ∈ D
Proof: Let d be a Cartesian product of multiset such that d = (d1, . . . ,dn) ∈ D and di ∈ 2Si , and

let it be considered the following computation

f ∗g(d)

By the linearity of f ∗ g function it holds:

f ∗g(d) =
⋃
d∈d

f ∗g(d)
def
=
⋃
d∈d

f(d) ∗ g(d)

where d ∈ S1 × S2 × . . .× Sn.
Due to partition of D according to index i, the elements d ∈ d are denoted (d′, d′′). Hence:⋃

d∈d
f(d) ∗ g(d) =

⋃
(d′,d′′)∈d

f(d′, d′′) ∗ g(d′, d′′)

By hypothesis i. given any d ∈ D it exist i such that for each pair (d′, d′′), (d′, d′′′) both belonging to d
it holds f(d′, d′′) = f(d′, d′′′). Moreover, because ∗ is distributive with regard to +, for any given d′ it
is possible to factorise value f(d′, ·) = f(d′, d′′)∀d′′. Hence the previous expression becomes:⋃

(d′,d′′)∈d

f(d′, d′′) ∗ g(d′, d′′) =
⋃

d′:(d′,d′′)∈d

f(d′, ·) ∗
⋃

d′′:(d′,d′′)∈d

g(d′, d′′)

by hypothesis ii. it holds⋃
d′:(d′,d′′)∈d

f(d′, ·) ∗
⋃

d′′:(d′,d′′)∈d

g(d′, d′′) =
⋃

d′:(d′,d′′)∈d

f(d′, ·) ∗
⋃

d′′:(d′,d′′)∈d

g(·, d′′) = f(d) ∗ g(d)

Observation: Prop. 2 does not apply when the argument d cannot be expressed as a Cartesian product
of sets, for instance the expression [X1

1 6= X2
1 ]〈S−X1

1 , S−X2
1 〉 is not rewritable using L as a Cartesian

product of class functions mapping on sets, so is any set d resulting form the aplication of the expression
to an element of the domain.

All the functions we will use are actually extensions of underlaying counterparts by Definition D1.
Hereafter the superscript ext will be omitted.
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Tuple composition The following property characterises the simple case of tuple composition.

Property 3. Let F, F ′ be two tuples, where F = 〈f1, f2, . . . , fn〉; if V ar(fi) ∩ V ar(fj) = ∅ for all i, j
such that i 6= j then

F ◦ F ′ = 〈f1 ◦ F ′, f2 ◦ F ′, . . . , fn ◦ F ′〉

The truth of Prop. 3 follows from Prop. 2, when it is considered d as F ′(c), ∗ as the Cartesian product
between functions {fi} of F . Since Cartesian product is ditributive with regard the sum and because the
hypothesis V ar(fi) ∩ V ar(fj) = ∅ for all i, j such that i 6= j assures the independency of {fi}, the
thesis follows.

Property 3 allows to solve the composition between two tuples in terms of more elementary compo-
sitions, namely between class-functions and tuples. Property 3 may be generalised:

Property 4. let F be such that:

F = 〈f1, . . . , fn1︸ ︷︷ ︸
F1

, fn1+1, . . . , fn2︸ ︷︷ ︸
F2

, . . . , fnk+1, . . . , fnk+1︸ ︷︷ ︸
Fk

〉

and let us assume V ar(Fi) ∩ V ar(Fj) = ∅ for each i, j = 1 . . . k such that i 6= j, moreover for each Fi
does not exist a subset of function {fij} belonging to it and such that V ar({fij})∩V ar(Fi\{fij}) = ∅,
then F ◦ F ′ is equal to:

F ◦ F ′ =
〈
〈F1〉 ◦ F ′, 〈F2〉 ◦ F ′, . . . , 〈Fk〉 ◦ F ′

〉
It is noticeable that the codomain of 〈Fi〉 is at most equal to Cmi

i .
Concluding the section, to deal with composition two relevant and related aspects should be tackled,

in order they are:

1) the ability to symbolically solve fi ◦ F ′ where fi is a class-function and F ′ is a function tuple;

2) the ability to symbolically solve 〈F1〉 ◦ F ′ where tuple 〈F1〉 contains cross variable repetitions.

Next both issues are addressed.

4.2.1. Elementary composition rules f ◦ F
The calculus solves the composition of class-function f by tuple F utilising a collection of elementary
rules. These rules are terminal rules and are based on the algebraic properties of elementary functions.
The assumption are:

i- f is an intersection form class-function, different from the empty class-function;

ii- D = 2C
m1
1 × . . .× 2C

mn
n is the codomain of F ;

iii- F = 〈f11 , . . . , fm1
1 , f12 , . . . , f

m2
2 , · · · , f1n, . . . , fmn

n 〉;

iv- fki is an elementary class-function for all i, k.
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In general, the composition is neither right nor left distributive with respect to the intersection, thus
the following rewriting (f ∩ g) ◦F ≡ f ◦F ∩ g ◦F , that would allow us to go one step ahead in solving
the operator, can not be applied. However, in expression f ◦F if f is an intersection of a given subset of
SN elementary functions then F can be distributed on single terms of f .

Indeed in several cases an intersection of SN elementary functions, if simplified, is composed by
functions that according to the meaning of Prop. 2 are independent one each other. The following table
summarizes the possible forms of f after simplification:

1.
⋂
j∈I !

kjXj
i ∩

⋂
j∈J S−!kjXj

i , for all I, J ⊆ {1, . . . ,mi} and I∩J = ∅ and kj ∈ {0, . . . , |Ci|−1}

2.
⋂
j∈I !

kjXj
i ∩

⋂
j∈J
⋂
k∈Kj

S−!kXj
i , for all I ⊆ {1, . . . ,mi}, Kj ⊆ {0, . . . , |Ci| − 1}, J ⊆

{1, . . . ,mi} and I ∩ J = ∅

In case 1. it is possible to distribute F on each term of the intersection because of Prop. 2 since each
term maps onto a different component of the tuple argument.

In case 2. it is possible to distribute F on the terms of the outer intersections but not on the terms of
the innermost, indeed terms of the innermost intersection are dependent because map on a same compo-
nent j of the tuple argument. Such forms

⋂
k∈Kj

S−!kXj
i are discusssed at the end of this subsection.

Table in Rule Set [A] shows the rules utilised to solve e ◦ F where e is an elementary function.

Rule Set [A]. (Elementary compositions)

[1] [2] [3] [4] [5] [6]
Xj

i ◦ F !kXj
i ◦ F S −Xj

i ◦ F S−!kXj
i ◦ F Si ◦ F Si,j ◦ F

f ji !kf ji
S if |f ji | > 1

S − f ji if |f ji | = 1

S if |f ji | > 1

S−!kf ji if |f ji | = 1
Si Si,j

Rules [A].1,[A].5, and [A].6 are terminal rules. Rule [A].2 is not a terminal rule and the rules to
compute successor of a SN class-function have to be applied. Rules [A].3 and [A].4 require a further
analysis because the related result is dependent on the size of the f ji function of F .

Rule set [A] shows that generally the calculus is functional to the size of the class-functions. Calculus
keeps track of class-function sizes on a rewriting rules and on the involved expressions basis. Sizes of
elementary functions are provided in Tab. 4. When class-function is an intersection-form its size may

Table 4: Size of elementary functions.

Xj
i S −Xj

i Si Si,j

1 |Ci| − 1 |Ci| |Ci,j |

range over an interval of values: for instance an expression involving at least two projections on different
variables such as Xj

i ∩ Xk
i can have size 1 or 0, so |f ji | ≤ 1. The choice to rewrite the expression as

〈Xj
i 〉[X

j
i = Xk

i ], where the class-function has size exactly 1, rather than keep it in intersection form is
merely context dependent. Table 5 shows the sizes of intersection forms as computed by the intersection
rules.
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Table 5: Size of class-functions resulting from intersection rules.⋂
j X

j
i

⋂
j S −X

j
i

⋂
j S−!kjXj

i

≤ 1 |Ci| − 1 ≤ |f | ≤ |Ci| − v |Ci| − v
v: number of variables.

Observation: Simplification rules implicitly map class-functions whose size is 0 into the empty class-
function, by this reason it is not possible to have an expression representing the empty function. This is
a critical requirement which assures that algorithms used to implement the calculus will terminate.

Example 4.1. Let us assume we need to compute the following composition:

〈S −X1
1 〉 ◦ 〈S −X1

1 ∩ S −X2
1 〉

We observe that depending on the size of class C1 the result may differ since the size of the intersection-
form may be 1 or greater than 1. For instance, if we are assuming |C1| = 3 then the right term of
composition may be rewritten as:

S −X1
1 ∩ S −X2

1 = (S −X1
1 )[X1

1 = X2
1 ]︸ ︷︷ ︸

size is 2

+ (S −X1
1 −X2

1 )[X1
1 6= X2

1 ]︸ ︷︷ ︸
size is 1

where the size of the leftmost term is greater than 1, namely 2, whereas the size of the rightmost term is
1. Composition with term S−X1

1 may be now done using the rules discussed in the previous sub-section,
in particular the composition with the leftmost term results in SC1 [X1

1 = X2
1 ].

Whereas, if we are assuming |C1| > 3 then surely |S−X1
1 ∩ S−X2

1 | > 1 and the initial composition
S −X1

1 ◦ (S −X1
1 ∩ S −X2

1 ) becomes simply SC1 .

The example shows that the result of compositions of this type must take into account the number
of complements and the size of the class on which these are defined in order to determine the size of
the function itself. The approach making use of guards to split the intersection-form into terms whose
size is 1 or greater than 1, shown in the example, may be generalised to expressions with any number
of complements. Let n be the number of complement terms appearing in the intersection-form (which
includes complements only) namely fi =

⋂n
j=1(S −X

j
i ) where for simplicity we assumed consecutive

indices for projection complements, then the following cases are possible:

1. if n < |Ci| − 1 then it holds that |fi| > 1, and the composition with the left term may be solved
according to the rules introduced in the previous sub-section;

2. if n = |Ci|−1 then using appropriate guards we may re-write the intersection-form in two disjoint
tuples:⋂n

j=1(S −X
j
i ) ◦ [g1] +

⋂n
j=1(S −X

j
i ) ◦ [g2]

where the two guards express the following conditions: g1 =“all projections are different from
each other” and g2 =“at least two projections are not different”. The first term has size 1 whereas
the second term has size greater than 1. Also in this case we may proceed with the composition
with the left term according to the rules given in the previous sub-section;
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3. if n > |C1| − 1, i.e. n ≥ |C1|, then the intersection-form may be re-written using guards in three
disjoints terms:⋂n

j=1(S −X
j
i ) ◦ [g1] +

⋂n
j=1(S −X

j
i ) ◦ [g2] +

⋂n
j=1(S −X

j
i ) ◦ [g3]

where the guards are so defined: g1 =“there are |Ci| projections that differ”; g2 =“there are
exactly |Ci| − 1 projections that differ”; g3 =“there are less than |Ci| − 1 projections that differ”.
Observe that the first term results in the the empty set, since there can not exist a colour of the
domain common to all complements. The second term instead is such that its size is equal to 1,
and the third one is such that its size is greater than 1. Once this partition has been made the rules
given in the previous sub-section may be applied in order to compute the composition.

Intersection forms with dependent terms When, in expression f ◦ F , function f is an intersection-
form class function containing repetitions of successors of a given variable Xj

i then Prop. 2 is not appli-
cable due to the dependence between the terms of the intersection. In this case the composition can not
be distributed in order to solve it.

The only not empty intersection-form showing repetitions of variable Xj
i is the intersection of com-

plements, whose form is f =
⋂
k∈I S−!kXj

i , with |I| > 1. The composition of this form with a function
F = 〈. . . , f ji , . . .〉 can be still syntactically solved according to the next rule. Set I contains whole
numbers representing the successor indexes appearing in f . We can assume that (possibly after having
split the rewriting process) max({h}, h ∈ I)−min({h}, h ∈ I) < n = |Ci| (remember that n may be
parametric). If n is fixed then the successor indexes are Natural values mod|Ci|: thus if |C1| = 7 then
!9X1

1 is rewritten as !2X1
1 .

Let |f ji | = m (again, m may be parametric if n is). The formula below expresses the composi-
tion result. The first case may include the parametric case, the other case refers to a fixed color class
cardinality:

f ◦ F =

{
S m > |I|∑

s∈{0,...,n−1}/I !sf ji elsewhere

The first result directly follows from the assumption above, that ensures f (whose cardinality is n− |I|)
is injective: its linear extension to a set of size at least |I|+1 results in the whole color class. The second
result descends from the rewriting of f as

∑
s∈{0,...,n−1}/I !sXj

i .

4.2.2. Repetition of a given variable

The previous section discussed cases of composition F ◦F ′ between tuples where the class-functions of
F are pairwise independent. The independence can be stated directly utilising the WN notion of V ar(fi),
that is, looking at the set of variables appearing in the class-function fi. However, repetitions of symbol
Xj
i for given values i, j in different class-functions of F introduces a dependence relationships. The

more general situation of composition shown in Prop. 4 must thus be addressed. Here the calculus focus
on computation 〈F 〉 ◦ F ′ pointed out in such property, precisely F is such that F = 〈f1, . . . , fm′i〉,
F ’s co-domain is 2C

m′i
i for a given i, where m′i ≤ mi and whose exact value depends by Prop. 2. The

problem complexity is faced in two subsequent steps:
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1. Tuple F is re-written in a way that composition by F ′ can be solved with regard to variable Xk
i

only, for each value of k;

2. Rewriting rules are provided to solve compositions F ◦ F ′ where F only depends by a single
variable Xk

i for a given k.

Step 1. is supported by the following rules which allow to re-write a tuple function F containing
intersection-form class-functions into an equivalent intersection of tuple functions each one being de-
pendent by a single variable.

Step-1 rewritings: Simplification of the left-tuple’s form.
In order to reduce the left operand of the composition to few basic forms, the left tuple is rewritten.

Consider as example F , in F ◦ F ′, to be 〈S −X1
3 , X

1
3 + X2

3 〉, then it is equivalent to the following
expression 〈S − X1

3 , X
1
3 〉 + 〈S − X1

3 , X
2
3 〉, where ‘+’ is the multiset sum. Composition can thus be

simplified distributing F ′ to the addends of the sum (rule [1]): 〈S −X1
3 , X

1
3 〉 ◦F ′+ 〈S −X1

3 , X
2
3 〉 ◦F ′.

This allows to reduce the form of the left tuple in the composition to those cases in which its class
functions are elementary symbols or intersection of them.

The tuples resulting from the previous rule are further rewritten. The target is to syntactically separate
those parts of the expression that are independent according to the meaning of Prop. 2. As example
consider F to be 〈S −X1

3 , S −X1
3 ∩ S −X2

3 〉 it can be re-written as 〈S −X1
3 , S −X1

3 〉 ∩ 〈S, S −X2
3 〉.

The nice property of the re-writing just introduced is that the obtained tuples depend on at most one
variable each: in the example the first tuple is function of X1

3 while the second tuple is function of X2
3 .

The expression coming out from the application of such property can be composed separately with F ′

by Prop. 2. The example would become F ◦ F ′ = 〈S −X1
3 , S −X1

3 〉 ◦ F ′ ∩ 〈S, S −X2
3 〉 ◦ F ′.

The rewriting is formally defined in the following rule [3]:
If fk, with k = 1, . . . , n, maps on sets then:

〈f1, f2, . . . , fn〉 → 〈g1, g2, . . . , gn〉 ∩ 〈h1, h2, . . . , hn〉 w.r.t. Xj
i [3]

where ∀k = 1 . . . n:

if fk : V ar(fk) = {Xj
i } then gk = fk, hk = Si;

if fk : Xj
i 6∈ V ar(fk) then gk = Si, hk = fk;

if fk = ek ∩ lk where V ar(ek) = {Xj
i } and Xj

i 6∈ V ar(lk) then gk = ek, hk = lk.

After the application of rule [3] V ar(〈g1, g2, . . . , gk〉) = {Xj
i } and V ar(〈h1, h2, . . . , hk〉) = V ar(〈f1, f2, . . . , fk〉)−

{Xj
i }.
Iteratively applying [3] for each variableXj

i allows to re-write a tuple functionF containing intersection-
form class-functions into an equivalent intersection of tuple functions where each tuple depends on an
unique and different variable Xj

i . If v = |Var(〈f1, f2, . . . , fk〉)| then the time complexity of [3] is an
O(n) and that of the complete algorithm is an O(vn).

The validity of the rewriting follows directly from the properties of intersection and Cartesian product
between sets, and by the fact that if variables Xj

i ,Xk
i with j 6= k appear in a same class-function of F

then they must be in an intersection form.
Due to the application of Rewriting [3], tuples appearing at the final step of composition may show a

very few kind of forms limited by the only two possible symbols Xj
i and S −Xj

i for a given j.Table 6
summarizes such basic forms.
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Table 6: Basic tuple forms in composition.

A. 〈S−!skXj
i 〉⊗m

k: 1
tuple full of complements of a given variable

B. 〈. . . , !sXj
i , . . .〉 tuple in which at least one element is a projection

C. 〈S −∑s∈Ik !sXj
i 〉⊗m

k: 1
tuple full of generalized-complements of a given variable

Step-2 rewritings: The basic forms of the left-tuple.

A. Tuple of complements. The first basic form of tuple F we consider is the one composed by
complements:

〈S−!skXj
i 〉⊗m

k: 1
◦ F ′, where sk ∈ {0, . . . , |Ci| − 1}

in this expression the kth component of the left tuple is the complement of the sk-successor of Xj
i (j

being fixed). The operator is solved applying first the following rewriting:

〈S−!skXj
i 〉⊗m

k: 1
→ 〈!skXk

i 〉⊗m
k: 1
◦ 〈S −Xj

i 〉⊗m [4]

we have thus reduced to solve a simpler case of composition where the left tuple consists of the
repetition of S −Xj

i :

〈!skXk
i 〉⊗m

k: 1
◦
(
〈S −Xj

i 〉⊗m ◦ F ′
)

in the above expressions the brackets show in which order the composition operator will apply. Let
G = [p]〈gk〉⊗m

k: 1
be the outcome of the inner composition. The outer composition’s result is:

〈!skXk
i 〉⊗m

k: 1
◦G→ [p′]〈!skgk〉⊗m

k: 1
[5]

where p′ is obtained from p by replacing each Xk
i occurrence with !skXk

i .
The inner composition is next illustrated.

Basic case of complement repetition.
Let us analyse function S−Xi applied to a set of elements {a, b, c} ⊆ C. By definition the result is:

S−X({a, b, c}) = (S−a) + (S− b) + (S− c). Observing that S−a = b+ c+ (S−a− b− c), where
association by brackets is relevant, and repeating a similar trick for b and c also, it is possible to express
S −X({a, b, c}) by b+ c+ (S − a− b− c) + a+ c+ (S − a− b− c) + a+ b+ (S − a− b− c) =
(b + c) + (a + c) + (a + b) + (S − a − b − c). Given F ⊆ C, let (S −X)F be a function from F to
Bag(F ) defined as the complement restricted to set F , that is, (S −X)F (c) = F − c ∀c ∈ F , and let
SF be the constant function on set C\F , that is SF (c) = C\F ∀c ∈ F , then it is possible to formally
write S −X evaluated in a set F ⊆ C as S −X(F ) =

∑
c∈F (S −X)F + SF . It is worth of notice that

SF is a function independent form the application because it is a constant.
In the context of composition 〈S − Xj

i 〉 ◦ F ′, set C above mentioned is Ci and F is the set of
colours of the application of class-function f ji of tuple F ′ to a colour of its domain. Thus utilising∑

c∈fji
(S − X)

fji
+ S

fji
to compute S − Xj

i (f ji ) two computation are required: a) S
fji

= S − f ji ; b)



24 Capra, De Pierro, Franceschins / Symmetric Nets: Focus on Composition Operator

∑
c∈fji

(S − X)
fji

. While the former is computable by use of re-writing rules for class-functions, the

latter seems to require unfolding on colours in f ji . Actually, unfolding is not necessary if the semantics
of the function is utilised, in fact just two results are possible: it is verifiable that if |f ji | = 1 the result
of
∑

c∈fji
(S −X)

fji
is the empty set; if |f ji | > 1 the result of

∑
c∈fji

(S −X)
fji

is f ji . Class-functions
admissible by the language assume a few basic forms and for these forms it is possible to trace the size.

Let us now analyse the result of composition 〈S −Xj
i , S −X

j
i 〉 ◦F ′, where F ′ = 〈f1i , . . . , fmi

i 〉 By
the above dissertation, it can be written 〈(S −X)

fji
+S

fji
, (S −X)

fji
+S

fji
〉(f ji ). Distributing over the

sum the expression becomes:

〈(S −X)
fji
, (S −X)

fji
〉+ 〈(S −X)

fji
, S

fji
〉+ 〈S

fji
, (S −X)

fji
〉+ 〈S

fji
, S

fji
〉

Let us analyse each term:

• 〈S
fji
, S

fji
〉 when applied to set f ji results in the computation of S − f ji ;

• 〈(S − X)
fji
, S

fji
〉 when applied to set f ji , due to constant nature of S

fji
and by the previous

discussion, results into 〈f ji , S − f
j
i 〉 if |f ji | > 1, the empty set elsewhere;

• 〈(S −X)
fji
, (S −X)

fji
〉 when applied to f ji results into 〈f ji , f

j
i 〉 if |f ji | ≥ 3, [X1

i = X2
i ]〈f ji , f

j
i 〉

if |f ji | = 2, and the empty set if |f ji | = 1.

B. Projection and complement repetition. Let us analyse function 〈Xj
i , S − Xj

i 〉 applied to a
set of elements {a, b, c} ⊆ Ci whose size is greater than 1. By definition the result is: 〈Xj

i , S −
Xj
i 〉({a, b, c}) = 〈a, S − a〉+ 〈b, S − b〉+ 〈c, S − c〉. Observing that 〈a, S − a〉 = 〈a, S − a− b− c〉+
〈a, b〉+ 〈a, c〉, and repeating a similar trick for b and c also, it is possible to express S −X({a, b, c}) as:

〈Xj
i , S −X

j
i 〉({a, b, c}) = 〈a, S − a− b− c〉+ 〈a, b〉+ 〈a, c〉+

〈b, S − b− a− c〉+ 〈b, a〉+ 〈b, c〉+
〈c, S − c− a− b〉+ 〈c, a〉+ 〈c, b〉

By the Cartesian product property the above can be re-written as:

〈Xi, S −Xi〉({a, b, c}) = 〈a+ b+ c, S − a− b− c〉+ [X1
i 6= X2

i ]〈a+ b+ c, a+ b+ c〉

In the contex of composition F ◦ F ′, set {a, b, c} is class function f ji of F ′, thus:

〈Xj
i , S −X

j
i 〉 ◦ F ′ = 〈f

j
i , S − f

j
i 〉+ [X1

i 6= X2
i ]〈f ji , f

j
i 〉

This can be further re-written as:

〈Xj
i , S −X

j
i 〉 ◦ F ′ = [X1

i 6= X2
i ]
{
〈f ji , S − f

j
i 〉+ 〈f ji , f

j
i 〉︸ ︷︷ ︸

〈fji ,S〉

}
+ [X1

i = X2
i ]〈f ji , S − f

j
i 〉︸ ︷︷ ︸

φ
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The example analysed the case where |f ji | > 1. When |f ji | = 1 then (see Definition D2) the
computation is trivial:

〈Xj
i , S −X

j
i 〉 ◦ F ′ = 〈f

j
i , S − f

j
i 〉

It is possible to write a single rule that summarizes both the situations:
〈Xj

i , S −X
j
i 〉 ◦ F ′ → [X1

i 6= X2
i ]〈Xi ◦ F ′, S −Xi ◦ F ′〉 [6]

The splitting of the result in two branches according to the size of f ji (|f ji | = 1 or |f ji | > 1) is done
when the inner class-function composition S −Xi ◦ F ′ is solved.

The above discussion can be generalised to any number of projectionsXj
i . and a unique complement.

With the notation that !0Xj
i = Xj

i , let F = 〈f1, f2, . . . , fn, fn+1〉 be such that fs =!ksXj
i for each

s = 1 . . . n and fn+1 = S−!kn+1Xj
i where k ∈ {0, |Ci|}, then

F ◦ F ′ = [g]〈f1 ◦ F ′, f2 ◦ F ′, . . . , fn+1 ◦ F ′〉

where [g] is a guard which is the conjunction of the following predicates:

- for each h, t ∈ {1, . . . , n}, h 6= t the predicate !khXh
i =!ktXt

i is in [g];

- for each h ∈ {1, . . . , n} the predicate !khXh
i 6=!kn+1Xn+1

i is in [g];

Proof.
To prove the above statement consider the function F : 〈X,S−X−!X〉. We need to evaluate F (f). We
proceed to a rewriting of F under this assumption. Adding and subtracting f+!f to the first component
the function F it can be rewritten as it follows, where all operations are on multisets:

〈X,S −X−!X〉 → 〈X,S − f−!f + f+!f −X−!X〉 →
→ 〈X,S − f−!f〉+ 〈X, f+!f −X−!X〉 →
→ 〈X,S − f−!f〉+ 〈X, f+!f〉 − 〈X,X〉 − 〈X, !X〉 (1)

Assuming first that f∩!f = ∅ the support of the last expression is equal to the support of the following
expression:

〈X,S − f−!f〉+ [X1 6= X2, !X1 6= X2]〈X, f+!f〉, iff x ∈ f

Applying now F (f) we obtain:∑
x∈f
〈X,S − f−!f〉+

∑
x∈f

[X1 6= X2, !X1 6= X2]〈X, f+!f〉

and since S − f−!f and f+!f are constants we obtain:

〈
∑
x∈f

X,S − f−!f〉+ [X1 6= X2, !X1 6= X2]〈
∑
x∈f

X, f+!f〉

which is equal to:

〈f, S − f−!f〉+ [X1 6= X2, !X1 6= X2]〈f, f+!f〉
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Assume now that f∩!f 6= ∅, for instance assume f = {a, b, e}. Expression (1) is

〈X,S−a− b︸ ︷︷ ︸
−(a+!a)

−b− c︸ ︷︷ ︸
−(b+!b)

−e− f︸ ︷︷ ︸
−(e+!e)

〉+ 〈X, a+ b+ b+ c+ e+ f,−X−!X〉

Applying to f it becomes:

〈f, S−a−b−b−c−e−f〉+ 〈f, a+b+b+c+e+f〉−〈a, a〉−〈b, b〉−〈e, e〉−〈a, b〉−〈b, c〉−〈e, f〉

we can take 〈f, 〉 out of the second tuple and elide it in the first tuple:

〈f, S − a− b− c− e− f〉+ 〈f, a+ b+ c+ e+ f〉 − 〈a, a〉 − 〈b, b〉 − 〈e, e〉 − 〈a, b〉 − 〈b, c〉 − 〈e, f〉

folding the result we finally obtain that it is equivalent to the support of:

〈f, S − f−!f〉+ [X1 6= X2, !X1 6= X2]〈f, f+!f〉

C. Generalised-Complement repetition. A generalised-complement on variable Xj
i is a class-

function f(Xj
i ) expressed as the complement of the sum of several instances of Xj

i , that is

f(Xj
i ) = S −

∑
k∈I

!kXj
i

where k ∈ {0, . . . , |Ci|} and I is a set of successor indexes. Syntactically it can be rewritten as:

S −
∑
k∈I

!kXj
i ≡

⋂
k∈I

S−!kXj
i

This paragraph illustrates the rewriting rule to solve composition T ◦ T ′ when tuple T is composed
by repetitions of generalised-complements. This is the most general form of complements repetition
(the previous section ”Basic case of complement repetition” discussed a particular case in which each
generalised complement in tuple T is actually the complement of a single instance of variable Xj

i ).
Generalised-Complement repetition is solved applying a more general algorithm based on the k-

projection operator Πk. Πk is a unary operator on tuples and it maps a m-tuple T into a k-tuple T ′,
with k < m, projecting it on the first k components. This operator is discussed in detail in next Sec. 4.3
where it is used to solve critical cases due to the presence of filters in compositions.

The problem of the Generalised-Complement repetition can be formalized as follow:

〈f1(Xj
i ), f2(X

j
i ), . . . , fl(X

j
i )〉 ◦ T ′

where fi are Generalised-Complement repetitions of variable Xj
i . In order to solve the composition

we need to add several variables to set V ar; to do this without incur in a global renaming, we add a
second dimension in the index denoting the variable’s instance, that allows us to name variables related
to Xj

i : assuming there are l generalised-complement class-functions in T dependent on Xj
i , set V ar is

modified replacing Xj
i with Xj,1

i , Xj,2
i , . . . Xj,l

i .
Making a substitution of variable, T is rewritten as Tr:
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T → Tr : Tr = 〈f1(Xj
i ←↩ X

j,1
i ), f2(X

j
i ←↩ X

j,2
i ), . . . , fl(X

j
i ←↩ X

j,l
i )〉

Tuple T ′ is expanded duplicating l-times component g at position j (those related to the value that
function Xj

i maps to), denoted as gj , in the following way:

T ′ → T ′e : T ′e = 〈. . . , gj,1, gj,2, . . . , gj,l︸ ︷︷ ︸
component gj

, . . . , 〉

The solving of T ◦ T ′ is thus brought to the solving of the following expression:

Tr ◦ [Xj,1
i = Xj,2

i ∧X
j,2
i = Xj,3

i ∧ . . . ∧X
j,l−1
i = Xj,l

i ] ◦ T ′e
The above expression contains a predicate which can not be solved with the rules till now described.

The following rewritings will be justified later on. Basically they extend tuple Tr with a component in
order to represents the predicate so that the composition rules can be applied, Πl is then used to obtain
the final result:

Πl

{
〈f1(Xj,1

i ), f2(X
j,2
i ), . . . , fl(X

j,l
i )︸ ︷︷ ︸

Tr

, Xj1
i ∩X

j2
i ∩ . . . ∩X

jl
i︸ ︷︷ ︸

predicate in tuple-form

〉 ◦ T ′e
}

Table of elementary symbol compositions of Rule [A] is completed in order to solve elementary
compostion involving generalized-complement:

Ruleset [A] continued [7]
S −∑k∈I !kXj

i ◦ F⋂
k∈I(S−!kXj

i ◦ f ji ) if |f ji | = 1,∀n∑
r:0...n−1,!rX/∈Symb(f)!

rX ◦ g if |f ji | > 1,m+ 1 ≤ n ≤ m+ k

S if |f ji | > 1, n > m+ k

where, |I| = m, 1 < m < n, |f | = n−m, |f ji | = n− k, 0 ≤ k < n.

Example 4.2. Consider the following expression:

〈S −X1, S −X1−!X1〉[X1 6= X2] ◦ 〈S −X2, S −X1〉, n ≥ 3

which is equivalent to:

Π2(〈S −X1, S −X1−!X1, X1 ∩ S −X2〉 ◦ 〈S −X2, S −X1〉) [3]→
Π2(〈S −X1, S −X1−!X1, X1〉 ◦ 〈S −X2, S −X1〉 ∩ 〈S, S, S −X2〉 ◦ 〈S −X2, S −X1〉)︸ ︷︷ ︸

〈S,S,S〉

→

Π2(〈S −X1, S −X1−!X1, X1〉 ◦ 〈S −X2, S −X1〉).
Using the method described in this section, the expression above is rewritten as:
Π2(〈S−X1,1, S−X1,2−!X1,2, X1,3〉[X1,1 = X2∧X1,2 = X1,3]◦〈S −X2, S −X2, S −X2︸ ︷︷ ︸

duplicated component

, S−

X1〉)→
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Π2(〈S −X1,1, S −X1,2−!X1,2, X1,3 ∩X1,2 ∩X1,1〉 ◦ 〈S −X2, S −X2, S −X2, S −X1〉)
The tuple’s composition can be separately solved for the different unary components of the left-most

tuple, according to the intersection distribution property, obtaining:
Π2([X

1 6= X3 ∧X2 6= X3 ∧X2 6=!X3]〈S, (S −X2−!X2) ◦ (S −X2), S −X2〉)
where:

(S −X2−!X2) ◦ (S −X2)

{
S n > 3

S−!2X2 n = 3

Thus, after applying the projection we obtain:

→


〈X2, S−!2X2〉+ [X1 6=!X2]〈S −X2, S−!2X2〉 n = 3

〈X2, S〉+ [X1 6=!2X2]〈S −X2, S−!2X2〉+ [X1 6=!X2]〈S −X2, S−!3X2〉 n = 4

〈S, S〉 n > 4

4.3. Generalizing the composition: tuples with filters

Rules [1] and [2], illustrated as the starting rules in the processing of solving l ◦ l′, simplify the prob-
lem into a subordinate operation, that is the solving of T1 ◦ [p] ◦ T2. In several circumstaces [p] does
not represent an issue, in these cases in fact the predicate p can be represented in one or both of the
tuples applying filter/guard reductions rules and the process of solving can continue applying the tuple
composition rules previously illustrated (Sec. 4.2). Filter reductions are summarized in Appendix under
rule-sets [J ] and [H] and the process can be overall summarized as2:

T1 [p] T2
[J ],[H]−→ T ′1 ◦ T ′2

[S4.2]−→ l (3)

In detail, the predicate p can be represented into either or both tuples T1 and T2, that is one of the
following intermediate transformations can hold:

T1[p]
[H]−→ T ′1 or [p]T2

[J ]−→ T ′2 or T1[p
′]

[H]−→ T ′1 and [p′′]T2
[J ]−→ T ′2

where p′ and p′′ are parts forming p (i.e. p′ ◦ p′′ ≡ p). Hence the expression respectively becomes:

T ′1 ◦ T2 or T1 ◦ T ′2 or T ′1 ◦ T ′2
where tuple composition rules can be applied.
An alternative set of rules that can be used by the process of solving in place of those in [J ] and [H]

or that can be complementary, consists in rewriting the predicate p as a tuple (see rule-set [K]), that is

[p]
[K]−→ Tp and then continuing by using tuple composition rules to solve the expression:

T1 ◦ Tp ◦ T2

There are some cases where neither of the above approaches is effective in the processing of solving
due to the lack of rules to go ahead: this happens when a complete filter reduction is not feasible using
rule-set [J ] or [H] or, in the alternative approach, the solution of the intermediate expressions T1 ◦ Tp or

2Notation
[S4.2]−→ represents the application of the rewriting rules explained in Sect.4.2
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Tp ◦ T2 by means of rules [S4.2] brings back to [p]. The next section formally provides the whole set of
rewriting rules that allows to solve the composition between tuple in a such case, here we introduce by
means of an example the problem illustrating the process and an overview of the method.

Example 4.3. Consider the following cases of compositions where n = |C1| and where the subscript
denoting the color class of the function has been omitted:

1. 〈S −X1〉 ◦ [X1 = X2] ◦ 〈S −X2, S −X2〉, n > 1

2. 〈S −X1, S −X2〉︸ ︷︷ ︸
T1

◦[X1 = X2 ∧X2 6= X3︸ ︷︷ ︸
p

] ◦ 〈S −X1, S −X1, S −X1〉︸ ︷︷ ︸
T2

, n > 1

In neither of the above expressions the filter can be represented in some component of the tuples
using rules in [J ],[H]. The process of solving thus applies the alternative approach. Rewriting the filters
as tuples the two expressions above become respectively:

1. Since [X1 = X2]
[K]→ 〈X1 ∩X2〉, and 〈X1 ∩X2〉 ◦ 〈S −X2, S −X2〉 [4.2]→ 〈S −X2〉, the whole

expression is rewritten into 〈S −X1〉 ◦ 〈S −X2〉, which results in:

〈S −X1〉 ◦ 〈S −X2〉 [4.2]−→
{
〈S〉, n > 2

〈X2〉, n = 2

2. [X1 = X2 ∧X2 6= X3︸ ︷︷ ︸
p

]
[K]→ 〈X1 ∩X2, X2 ∩ S −X3, X3〉︸ ︷︷ ︸

Tp

.

Using tuple composition rules the rightmost composition is solved as:

〈X1 ∩X2, X2 ∩ S −X3, X3〉︸ ︷︷ ︸
Tp

◦ 〈S −X1, S −X1, S −X1〉︸ ︷︷ ︸
T2

[4.2]−→ [X1 = X2 ∧X2 6= X3︸ ︷︷ ︸
p

]◦〈S −X1, S −X1, S −X1〉︸ ︷︷ ︸
T2

making the rewriting process fall into a a loop.

Case 2 is the representative of a class of instances requiring an apart treatment. Before formally
presenting the rewriting steps let us outline the approach.

Considering that it is possible to project the elements belonging to the image of a tuple function T
on the first k components by composing the k-tuple 〈Xi〉i=1...k with T , then the preliminary step of the
approach builds on a basic result: it is possible to construct from a guarded tuple T [p] : D→ Cki a tuple
Te : D→ Ck+mi , m > 0, such that Te’s projection on the first k component is equivalent to T [p]:

〈Xi〉i=1...k ◦ Te ≡ T [p]

This is accomplished by adding m components to T , forming Te, such that whenever p evaluates to
false some of these m components maps to ∅ (and vice versa).

According to this consideration, case 2 of Example 4.3, after constructing Te for T1[p], would be-
come:

〈Xi〉i=1,2 ◦ 〈
T1︷ ︸︸ ︷

S −X1, S −X2,

p︷ ︸︸ ︷
X1 ∩X2 ∩ S −X3〉︸ ︷︷ ︸
Te

◦ 〈S −X1, S −X1, S −X1〉︸ ︷︷ ︸
T2
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Applying the rules of Sec. 4.2 for tuple composition the process of solving Te ◦ T2 ends up with:

Te ◦ T2
[4.2]−→


[
X1 6= X3 ∧X2 6= X3

]
〈S, S, S −X1︸ ︷︷ ︸

extra

〉, n > 2

〈X1, X1, X1 ∩ S −X1︸ ︷︷ ︸
extra

〉 → 〈∅, ∅, ∅〉, n = 2

The non parametric term, n = 2, is equivalent to the empty tuple, which corresponds to the composi-
tion’s final result 〈∅, ∅〉 after projectin on the first two component (〈Xi〉i=1,2). Instead the parametric
expression, n > 2, represents the sets:

Y (c) = {〈c1, c2, c3〉 ∈ C3
1 | c3 6= c ∧ c1 6= c3 ∧ c2 6= c3}, ∀c ∈ C1

The composition’s final result for the case n > 2 is the projection of the first two components of Y , that
is:

〈Xi〉i=1,2 ◦ Y (c) = {〈c1, c2〉 ∈ C2
1 | ∃c3, 〈c1, c2, c3〉 ∈ Y (c)}, ∀c ∈ C1

In this case the problem has been reformulated in terms of a composition of a filtered m-tuple by the
k-projection function, with k < m:

〈Xi〉i=1,2[X
1 6= X3 ∧X2 6= X3]〈S, S, S −X1〉, n > 2

The next section will illustrate the rewriting rule that the process of solving use in order to solve an
expression of the following form:

〈Xi〉i=1,...,k ◦ [p]T

It can be verified that the composition in the above expression will lead to the following result:

=

{
〈S, S〉, |n| > 3,

〈S −X1, X1〉+ [X1 = X2]〈S −X1, S −X1〉+ 〈X1, S〉, |n| = 3

Summarizing, T ◦ [p] ◦T ′ is rewritten to 〈Xi〉i=1,...,k ◦ (Te ◦T ′). Because Te ◦T ′ → l ∈ L, it comes
down to solve 〈Xi〉i=1,...,k ◦ l. This kind of composition, called k-projection of l, must be treated with
ad-hoc rules, a particular notation will be adopted for it, that is Πk(l).

An algorithm parametric with respect to color class cardinality is presented in the following sections.
A few extra notations are to be introduced.

4.3.1. Notation

Table 7 summarizes some basic notation used in this section.
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Table 7: NOTATIONS

T A m-tuple 〈f1, f2, . . . , fm〉
F A tuple-function [p]T [p′] where T is constant size and predicates p, p′ are in canonical

form
C(F ) = Ceii tuple co-domains are built of one possibly repeated color class Ci, and for this reason

subscripts will be omitted in notations: e.g., X2
1 will be denoted as X2, Si as S, Si,k

as Sk, and Ci,k as Ck
Πk(F ) Projection of tuple-function F on the first k components: 〈Xi〉i=1,...,k ◦ F
〈T, f〉 tuple obtained from T appending class function f ;
T |k 〈f1, f2, . . . , fk〉 restriction of tuple T to the first k component
T |¬k 〈fk+1, fk+2, . . . , fm〉 restriction of the tuple T to the last m− k components
A ⊆ V ar(p) A subset of variables of predicate p
p |A restriction of p to basic predicates involving only symbols in A;

if A = ∅ then p |Adef= true; p |Adef= true also in case p does not contain any term
involving only symbols in A.

p |¬A p |V ar(p)\A
p |k p |{X1,...,Xk}

p |¬k p |{Xk+1,...,Xk+m}

p |=, p |6= restrictions of p respectively to its equalities and its inequalities∗

	 f 	 f ′ ≡ f ∩ (S − f ′)
F ⊆ G F 	G ≡ ∅

∗ Observe that p ≡ p= ∧ p6=, but p 6≡ p |k ∧p |k. Let p = X1 6= X2 ∧ X1 6=
!X2 ∧ X1 6= X3. Then p |2= X1 6= X2 ∧ X1 6=!X2, p |2 = true, p 6= = p, and
p= = true.
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4.3.2. Basic steps

As a whole, the process used to solve the problem T [p]T ′ → l can be summarized in the following
transformations performed by the solution process by applying one or more rewriting steps:

T [p]T ′
(1)→ Π(Te ◦ T ′)

(2)→ Π(
∑
i

[.]Ti[.])
(3)→
∑
i

Π([.]Ti[.])
(4)→
∑
i

Π([.]Ti)[.]
(5)→ l ∈ L (4)

Each step can require the application of multiple intermediate rules. In step (1) the problem is trans-
formed, as described in the preface to this section, in a composition between tuples but modifying the
codomain of the tuple T which requires subsequently applying a projection on the original codomain, the
rules of the step (1) are discussed below in the rest of the paragraph; in step (2) the rules of composition
described in Sec. 4.2 are applied; steps (3) and (4) reduce the result of the composition between tuples
to a simpler form by operating immediate rules deriving from the properties of the composition and the
sum; step (5) requires the solution Π([.]Ti), the respective rules are discussed in the next section.

Step (1) rewritings. The rules applied at this step are based on the following Lemma:

Lemma 4.1. Let T [p] ∈ L. Then there exists Te such that T [p] ≡ Πk(Te).

Proof:
Let Tp be the tuple equivalent to [p] and Te be so constructed Te = T × Tp, then it holds Πk(T × Tp) ≡
T [p], because (T × Tp)(c) = T (c)× Tp(c), and Tp(c) = ∅ iff p(c) = false. ut

The proof of Lemma 4.1 is constructive and is based on an algorithm to compute Te in the form
T × Tp in which T is extended with an extra tuple Tp that represents the predicate p, however tuple Te
is not unique. In order to reduce the size of Tp actually rule-set [H] is first applied so to represent in
T those basic predicates of [p] that can be absorbed. Rule-set [B] given below is successively applied
iteratively to each basic predicate in p:

Rule Set [B]. (tuple expansion)

T [d(Xi) = Cj . . .] → Πk(〈T,Xi ∩ Sj〉[. . .])
T [d(Xi) 6= Cj . . .] → Πk(〈T,Xi 	 Sj〉[. . .])
T [Xi = !kXj . . .] → Πk(〈T,Xi∩!kXj〉[. . .])
T [Xi 6= !kXj . . .] → Πk(〈T,Xi ∩ S−!kXj〉[. . .])

where k is the size of T .

Let us consider the following example:

〈X1, S − X2〉[X1 6= X2 ∧ X1 6=!X2 ∧ X2 6= X3 ∧ X1 = X4]
[H][B]∗−−−−→ Π2(〈X1 ∩ S − X2 ∩

S−!X2 ∩X4, S −X2, X2 ∩ S −X3〉)
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4.3.3. Solving Π([p]T )

An initial set of rules, collected under the set [J ] provided for convenience in the appendix, are iteratively
applied to the expression [p]T in order to return both the T tuple and the filter p to a form suitable for
subsequent transformations. Such rules could simplify and eliminate the filter but this is not always the
case.

In general, after the application of rules in [J ] a filter is formed solely by equalities and inequalities
between projection symbols referring to tuple-components with cardinality greater than one: in partic-
ular the equalities refer to equivalent (syntactically identical) components, whereas inequalities refer to
partially overlapping components3.

Example 4.4. Consider the term G =: [X1 6= X2 ∧X1 6=!X2]〈X1, S −X1〉, with n > 2:

G
[J ].iv−−−→ [X1 6=!X2]〈X1, (S −X1)	X1〉 → [X1 6=!X2]〈X1, S −X1〉

[J ].v−−−→ 〈X1, (S −X1)	!−1X1〉 → 〈X1, S −X1 ∩ S−!−1X1〉 .

In conjunction with the rules in [J ] the following additional rule for filters reveals helpful in some
circumstances:

[Xi 6=!kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [Xi 6=!kXj . . .]〈. . . , fi∩!kfj , . . . , fj∩!−kfi, . . .〉+
[. . .]〈. . . , fi	!kfj , . . . , fj , . . .〉+ [. . .]〈. . . , fi∩!kfj , . . . , fj	!−kfi, . . .〉 if
|fi| > 1 ∧ |fj | > 1 ∧ fi 6≡!kfj [7]

Rule [7] expands [p]T into a sum of terms [p′]T ′ such that either T ′ has a smaller cardinality than T or
[p′] is a restriction of [p]. For efficiency reasons this rule should be used when strictly necessary, since it
increases the number of terms. It is required to apply this rule when the filter does not contain repetitions
of the same variable, it contains an inequality such that the compared tuple elements are different and
they have both size greater than one.

Example 4.5. Consider the term F =: [X1 6= X2]〈S, S − X1〉, with n > 2: observe that in this case
Ruleset [J ] cannot be applied.

F
[7]−→ [X1 6= X2]〈S −X1, S −X1〉+ 〈S 	 (S −X1), S −X1〉+ 〈S −X1, (S −X1)	 S〉

→ [X1 6= X2]〈S −X1, S −X1〉+ 〈X1, S −X1〉

The first rewritings implemented in order to simplify the problem of k-projection of a constant size tu-
ple with filter operate in bringing to common factor those basic predicates of p on which the k-projection
does not affect. To simplify the discussion we will always assume that p is the result of a canonic
reduction of the predicates.

[Lemma 4.2] Let p ∧ p′ be a predicate where p only contains variables in {X1, X2, . . . , Xk}, then
Πk([p ∧ p′]T )→ [p]Πk([p

′]T ) [8]

Proof:
Πk([p ∧ p′]T ) can be rewritten to Πk([p] ◦ [p′]T ). Because symbols in p refer to the first k elements of
T , we can swap symbols Πk and [p] once [p]’s domain has been suitably restricted. ut
3In the following example notation

[J].iv(v)−→ refers to the application of the fourth (fifth) rule in Ruleset[J ]
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In the case [p′] in [8] is reduced to being empty, the following transformation is valid, of immediate
derivation given the hypothesis:

[Lemma 4.3] Let T be a constant size tuple, then
Πk(T )→ T |k [9]

Finally, the following rule further simplifies the form of the p′ filter in [8]:
[Lemma 4.4]

Πk([p
′]T )→ [p′ |=,k]Πk([p

′ |6=]T ) [10]

Proof:
Due to Lemma 4.2 we just have to show that Πk([p]T ) ⊇ Πk([p

′]T ), where p′ = p |=,k ∧p6= (⊆
is immediate, given that p ⇒ p′). That is, for each c, s′ ∈ [p′]T (c) there exists s ∈ [p]T (c) s.t.
Πk(s) = Πk(s

′). Let s′ = 〈c1, . . . , cn〉. We need to consider equalities Xi =!hXj , with i > k ∨ j > k,
which occur in p but not in p′. Under the assumption that p is in canonical form, and equality reduction
rules have been applied (Rule-set [J ]), the following holds: i < j, symbol Xj in p occurs just on the
above equality, finally fi =!hfj in T (i.e., the i-th and j-th components in T coincide, modulo the
successor). The color-tuple s, built in such a way that it initially coincides with s′, and whose j-th
component (note that j > k) c′j is set equal to !−hci (considering all equalities of the form above),
belongs to [p]T (c): in fact, c′j(=!−hci) ∈ fj(c) because we know that ci ∈!hfj(c)(= fi(c)) (remind that
!hf(c) =

⋃
a∈f(c)!

ha). Moreover, by construction, p(s) = true and the first k elements of s are the same
as in s′. ut

Consider the following example, to which lemmas above apply (n > 2):

Π2([X
1 6= X2 ∧X1 6=!X2 ∧X2 = X3]〈S −X1, S −X2, S −X2〉 [8]−→ [X1 6= X2 ∧X1 6=

!X2]Π2([X
2 = X3]〈S −X1, S −X2, S −X2〉 [10],[9]−−−−→ [X1 6= X2 ∧X1 6=!X2]〈S −X1, S −X2〉

Summarizing, we can hereinafter focus on terms Πk([p]T ) where T is constant-size, and p is a
canonical predicate composed from basic predicates of inequality and does not only contain variables in
{X1, . . . , Xk}.

4.3.4. Solving Πk([p]T ) in a general parametric way

|C| can be a parameter n of the calculus, in this case the result of the solving process may be parametric
on the values that n can assume. Usually we can obtain an expression for a fixed value of n or for an
interval of values, that is:

e→
{
e1, n = k, k ∈ N
e2, l ≤ n ≤ u, l ∈ N, u ∈ N + {∞}

Accordingly, the class-function’s cardinalities are parametric in n. For instance, if fi = S −X1 −X2

and |C| = n, with n ≥ 3 then:

|fi| =
{
n− 1, n ≥ 3, if X1 = X2

n− 2, n ≥ 3, if X1 6= X2
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Lower and an upper bounds for class functions are straightforwardly derived: If n = K then |fi| =
di, where the actual value of di may depend on K and on the form of fi: for example if fi = S − Xj

then di = K − 1, then lb(fi) = ub(fi) = di; If l ≤ n ≤ u, then l − ki ≤ di ≤ u− ki where ki depends
on fi. The rules and lemmas so far presented are not enough to always solve the expression Πk([p]T ).
In fact, there are some terms Πk([p]T ) to which none of the rules till now presented applies in order to
solve the expression, even when n (the color-class cardinality) is fixed. Here are three such terms:

e1 : Π2([X
1 6= X2 ∧X1 6= X3 ∧X2 6= X3]〈S −X1, S −X1, S −X1〉), n > 2

e2 : Π2([X
1 6= X2 ∧X1 6=!X2 ∧X1 6= X3]〈S, S, S〉), n > 2

e3 : Π1[X
1 6= X2 ∧X1 6=!2X2]〈S −X1−!2X1, S −X1−!2X1〉, n = 4

e1
4.2−−→ [X1 6= X2]Π2([X

1 6= X3 ∧X2 6= X3]〈S −X1, S −X1, S −X1〉) ?→
e1

4.2−−→ [X1 6= X2 ∧X1 6=!X2]Π2(X
1 6= X3]〈S, S, S〉) ?→

e3
?−→

An even more important concern is the ability to figure out a parametric result in the event of terms
with an associated constraint of kind n ≥ l. The rewriting process of such terms raises termination and
efficiency issues.

A termination criterion useful for the solving of parametric terms is given by the next claim, whose
validity is a direct consequence of k-projection definition of a tuple and because p(c) ⊆ p(c) |k, ∀c ∈
cd(p):

Claim 4.1. Πk([p]T ) ⊆ [p |k]Πk(T )

Assuming we are able to solve Πk([p]T ) fixed n, a brute-force approach would consist in finding out
the k-projection result for increasing values of n starting from n = l. The following property simplifies
the analysis.

Property 5. If for n = val it holds:

Πk([p]T ) ≡ [p |k]Πk(T )

then the same is valid ∀n > val

The validity of the above property is guaranteed by filter monotonicity: if p(c) = true for n = val then
p(c) = true for n > val. The stop criterion given by Prop. 5 is eventually met, as n grows up (as it
will be formally shown later). The problem is that it is not know a priori when, so we should check for
the equivalence Πk([p]T ) ≡ [p |k]Πk(T ) between possibly complex terms at the end of each rewriting
branch. Even if theoretically feasible, such an approach is highly inefficient, inelegant, and complex to
implement.

4.3.5. Parametric bounds in solving k-projection

In this section it is provided a parametric analysis on n, the size of color-class C, giving intervals of
values for it in which the solving of k-projection can be simplified and solved.

In first place it is provided an algorithm calculating an upper value for val as defined in Prop. 5. We
call this a monotonicity-bound for n.
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k-Projection monotonicity-bound

Definition 4.1. A value uπk ∈ N such that:

Πk([p]T ) ≡ [p |k]Πk(T ), ∀n > uπk

is called a k-projection monotonicity-bound

In the treatment it is convenient to study [p]T (c) as a system made up of a set of inequations (modulo-
n) between variables {Xi}, with the implicit constraints Xi ∈ fi(c)(⊆ C1), ∀i : 1 . . . k + m. Set
[p]T (c) coincides with the set of solutions of such a system. We shall use the notation {[p]T (c)}S when
we’ll refer to this interpretation. In particular: ΠA{[p]T (c)}S, with A ⊆ {X1, . . . Xk+m}, denotes the
projection of system’s solutions to subset A of variables.

Example 4.6. For instance consider the following expression:

[p]T = [X1 6= X2 ∧X1 6= X3]〈S, S, S −X〉

given a color c in the domain C of the tuple T , its image [p]T (c) is the set of 3-tuple (X1, X2, X3) with
X1 ∈ C, X2 ∈ C, X3 ∈ C/{c} and that are solutions of the following system of inequalities:

Sc =

{
X1 6= X2

X1 6= X3

The image of c ∈ C of the 2-projection Π2([p]T (c), if |C| ≥ 2, is the set of 2-tuple (X1, X2) with
X1 ∈ C, X2 ∈ C and that solutions of the following system of inequalities:

Sc =
{
X1 6= X2

ut
Since T has been assumed constant size, we can think of variables Xi as taking values on discrete

domains of cardinality di = |fi|.We also know that di can be expressed as n− ki (parametric) or simply
ki (constant), where ki ∈ N is known.

A criterion to find out a value for uπk builds on the following Lemma 4.5.
[Lemma 4.5] Let qi,p be the number of inequations involving Xi in p and di = |fi|, if di > qi,p then

∀c:
Π¬{Xi}{[p]T (c)}S = {[p |¬{Xi}]T (c)}S

Proof:
⊆ directly follows from p ⇒ p |¬{Xi}. For convenience, let i = 1: given any solution 〈c2, . . . , cm+k〉
of {[p |¬{X1}]T (c)}S, because f1(c) > q1,p there exists c1 ∈ f1(c) such that 〈c1, c2, . . . , cm+k〉 is a
solution of {[p]T (c)}S. ut
A generalization of Lemma 4.5 is the following (we hereinafter omit the argument c and the subscript
S):

[Lemma 4.6] Let QX = {Xi ∈ V ar(g) : di > qi,p}. Then

Π¬QX
([p]T ) = [p |¬QX

]T
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Proof:
Let QX = A ∪ {Xj}: due to Lemma 4.5, Π¬QX

([p]T ) = Π¬A(Π¬{Xj}([p]T ) ≡ [p |¬{Xj}]T ) . . . ut
Lemma 4.5 and 4.6 give sufficient conditions to relax a k-projection instance by eliminating symbols
Xi from p, without affecting the k-projection’s outcome. They depend on the cardinality of tuple’s
components and the number of inequations involving Xi. An immediate application is the following:

Corollary 4.1. Given Πk([p]T ), ∀i > k : di = n − ki then max{qi,p + ki}i>k is a k-projection upper
bound.

Example 4.7. Π1([p]T ), where

p = [X1 6= X4 ∧X1 6= X2 ∧X1 6=!X2 ∧X2 6= X3 ∧X2 6=!−1X3 ∧X2 6= X4 ∧X2 6=!X4 ∧X3 6= X4]

T = 〈S −X1, S, S, S〉

According to Corollary 4.1, uπ1 = max{6, 3, 4} = 6, then ∀n > 6 Π1([p]T ) = 〈S −X1〉.
ut

Corollary 4.1 does not assure that uπk is minimal. Algorithm 1 calculates if it exists a minimal uπk
value. It builds on Lemma 4.5.

Algorithm 1 Tuple k-projection’s Upper Bound

Require: a simple tuple T = 〈fi〉i=1,...,k+m, a canonical filter p formed by inequations
Ensure: a minimal upper-bound for Πk([p]T )

1: function PROJUB(k, p, T )
2: uπ := 0
3: while (Vextra := {Xj ∈ V ar(p) : j > k}) 6= ∅ do
4: if (Xlb := {Xi ∈ Vextra : lb(fi) > qi,p}) 6= ∅ then
5: p := p |¬Xlb

6: else if (Xub := {Xj ∈ Vextra : ub(fj) > qj,p}) 6= ∅ then
7: qm := min({ki + qi,p, X

i ∈ Xub})
8: uπ := max(uπ, qm)
9: p := p |¬{Xi∈Xub|ki+qi,p=qm}

10: else
11: return∞
12: end if
13: end while
14: return uπ
15: end function

The ProjUb’s output if finite is a minimal value uπk s.t., for each n > uπk : Πk([p]T ) ≡ [p |k]Πk(T ).
The idea on which the algorithm works can be illustrated representing the inequation system p as a
multigraph whose set of nodes is V ar(p), such that an edge between Xi and Xj with weight wi,j
denotes wi,j inequations relating Xi to Xj .

Figure 3 refers to Example 4.7. Two different colors are used to depict nodes relative to variables
with indices little than or equal to k and for variables with indices bigger than k. The figure describes
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Figure 3: Computation of the upper bound uπk illustrated

the first iteration, in which the set of nodes Xi : i > k and qi,p + ki is minimal is identified and then
eliminated according to Lemma 4.6: this happens for i = 3 because q3,p + k3 = 3 and thus the set is
{X3}. The results is a reduced graph corresponding to a system {[p |V ar(p)/X3 ]T}S whose k-projection
is the same as the original. Analogously the second iteration considers this graph and identifies {X4}
as the candidate for elimination beacuse d4,p′ + k4 = 3 is minimal, setting as the running uπ1 value the
maximum between the current uπ1 value and 3. The iteration stops when the reduced system contains
only symbols with indices ≤ k or there are no nodes candidate for elimination (returning∞ in the latter
case).

Algorithm 1 works both in the case the cardinality of tuple components fi is fixed and in the case it
is parametric in n. If all components are “unbounded” it results in a meaningful upper bound.

Claim 4.2. If ∀fi, i > k : ub(fi) =∞ then Algorithm 1 results in uπk ∈ N

It may therefore be convenient to separately consider the case in which the parameter n assumes a
given value, and thus all components of T have a fixed cardinality, and the case in which the parameter
n assumes values on an interval and thus so the T ’s components.

The only critical expression is of the following kind, where for simplicity we consider a 2-tuple:

[X1 6= X2]〈Sh, S −X1〉, |C| = n

|Sh| is constant, |S −X1| = n− 1. The initial expression is rewritten, using rule [7], into a sum whose
first term (that retains the filter) is in turn rewritten into a pair of simple terms. The resulting tuples’
components have all constant cardinality (|Sh| − 1 and |Sh|).

[X1 6= X2]〈Sh, S −X1〉 [7]−→ [X1 6= X2]

T1︷ ︸︸ ︷
〈Sh ∩ S −X1, Sh ∩ S −X1〉+T ′ + T ′′

T1 → 〈Sh ∩ S −X1, Sh ∩ S −X1〉[d(X1) = C1,h] + 〈Sh, Sh〉[d(X1) 6= C1,h]

Seemingly the computation of uπk doesn’t depend on the form of functions fi in T . Indeed, since
we are supposing that rule set [J ] has been preliminarily applied, if Xi 6=!hXj then f i and !hfj at least
partially overlap. In many cases we can also suppose that all variables Xi in p have the same domain
(i.e., refer to the same fi), modulo a given !h (possibly h = 0). This is true, in particular, if p meets the
following:
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Summary Let l and u be respectively the lower and upper color class bounds, that is l ≤ n ≤ u, where
n = |C|. If uπk ∈ N then there are two possible actions:

if uπk < l:
Πk([p]T )→ [p |k]Πk(T ), n ∈ [l, u]

if uπk < u:

Πk([p]T )→
{

[p |k]Πk(T ), n ∈ [uπk + 1, u]

Πk([p]T ), n ∈ [l, uπk ]

k-Projection lower bound In this section we provide a second bound to the parameter n under which
the k-projection can be solved in the empty function.

Definition 4.2. A value lπk ∈ N+ such that:

[p]T ≡ ∅, ∀n < lπk

is called a k-projection null-bound

We can exploit a basic result of graph-theory. Let G = (V,E) be a simple graph, where an edge
uv is a pair of vertices {u, v} ⊆ V , with v 6= u. The order of G is |V |. The degree of a vertex, d(v),
is the number of adjacent vertices. The maximum degree (or simply, the degree of G) is denoted ∆.
An independent set of G is a set of nodes among which there are no edges. The size of the largest
independent set is denoted α. A completely connected graph is said a clique. The order of the maximum
clique contained in G is denoted ω.

Let r ∈ N+. A r−coloring of G is a map ϕ : V → {1, 2, . . . , r} such that ϕ(u) 6= ϕ(v) for
each uv ∈ E. A graph G is said r-colorable if G admits a r-coloring. The chromatic number of G,
X(G), is the minimum r such that G is r-colorable. We know that max({ω, |V |/α}) ≤ X(G) ≤
min({∆ + 1, |V | + 1 − α}), moreover if G is planar, X(G) ≤ 4. A number of algorithms computing
X(G) have been developed, based on the reduction theorem.

A predicate (system of inequations) p can be associated to a simple graph. This way, the problem of
finding lπ comes down to computing its chromatic number, hereinafter denotef X(p).

Definition 4.3. The graph (V,E) associated with p is such that V = Symb(p), and uv ∈ E if and only
if “u 6= v” is in p or u = !hXi and v = !jXi.

Lemma 4.7. X(p) is a k-rojection lower bound, that is for n < X(p) it holds p ≡ ∅

Consider again Example 4.7. The graph associated with the filter (definition 4.3) is depicted in Fig. 4.
We have X(p) = 3, so ∀n < 3 Π1([p]T ) = ∅.

A greater lπ value may be sometimes found taking account of tuple components.

Corollary 4.2. LetD =
⋃
h, !hXi∈Symb(p)!

hfi, and |D| ≤ n−α, α ∈ N+. Then X(p)+α is a Projection
Lower Bound.
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Figure 4: The graph for the computation of the lower bound lπ

Proof:
D represents the union of domains in which every symbol occurring in p can take value. If |D| is less
than the color-class cardinality (n) of (at least) α, then no (n−α)-colouring of the graph associated with
p is possible (i.e., no solution of the system [p]T does exist) if n− α < X(p). ut

In particular if [p]T is a pure fixed-point (Definition 6) then |D| = |fi|, for any fi in T . Consider for
example the term:

[X1 6= X2 ∧X3 6= X2 ∧X1 6= X3]〈S −X1 −X2, S −X1 −X2, S −X1 −X2〉

according to Corollary 4.2, lπ = 5 (X(p) = 3, α = 2).
If [p]T is not a pure fixed-point we might obtain an even better result by considering any subgraph

p′ of p: the value we get by applying Corollary 4.2 to p′ is a k-projection lower bound.

Summary Again, let l and u be respectively the color class bounds, that is l ≤ n ≤ u, where n = |C|.
After computing lπ there are two possible actions:

if lπ > u:
Πk([p]T )→ ∅, n ∈ [l, u]

if lπ > l:

Πk([p]T )→
{
∅, n ∈ [l, lπ − 1]

Πk([p]T ), n ∈ [lπ, u]

4.3.6. Remaining cases

The summaries done in the previous paragraphs on the two bounds (monotonicity-bound and null-bound)
show that the cases to solve are those represented in Fig. 5 in which lπ ≤ n ≤ uπk . In order to solve
these remaining cases, we consider first the k-projection of expressions [p]T where the predicate p has
got a given form called single-form predicate.
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n > u⇡k
=) ⇧k([p]T ) ⌘ [p|k]⇧k(T )n < l⇡k

=) [p]T ⌘ ;

l u
u⇡kl⇡k

Figure 5: Remaining cases

Single-form predicates

Definition 4.4. A predicate p is said to have a single-form if and only if |Symb(p)| = |V ar(p)|

In other words p is single-form if each variable Xi belonging to V ar(p) appears in just one fashion, say
!hXi. By the way any predicate built on an unordered color class is single-form. The following is an
example of a single-form predicate, assuming the color class C ordered:

[ X1 6=!X2 ∧ X1 6=!X3 ∧ !X2 6=!X3 ]

where variable X1 is present with symbol X1, variable X2 is present with symbol !X2, and variable X3

is present with symbol !X3.
When considering single-forms we shall refer to their minimal representative. Generally single-form

may be not canonical. Any term [p]T with p single-form is rewritable by rule [7] as a sum:

[p]T ′ + . . .

where T ′ in [p]T ′ undergoes to the following property:

Property 6. If Xi 6=!hXj ∈ p then fi = !hfj .

Lemma 4.8. Given [p]T such that p is single-form and T satisfies Prop.6, if the graph associated with
p |k is a clique and for any fi in T |fi| ≥ X(p) then Πk([p]T ) ≡ [p |k]Πk(T )

Proof:
As usual, we have just to prove⊇. Without losing generality, we suppose V ar(p) = Symb(p), |V ar(p)|
is the tuple’s arity, and |fi| = X(p). Any solution of the system [p |k]T |k takes the form 〈c1, . . . , ck〉,
with ci 6= cj for each i 6= j. As T is formed only by fi, and |fi| = X(p) (≥ k), there must exist a
|fi|-colouring 〈c1, . . . , ck, . . .〉 of the graph representing p, i.e., a solution of [p]T . ut

Lemma 4.8 provides with a simple way to treat unresolved case Πk([p]T ) where p is a single-form: if in
p there are some pairs (Xi, !hXj) of independent nodes Xi, !hXj , with i, j ≤ k, then we rewrite

[p]T → [Xi =!hXj ∧ g]T + [Xi 6=!hXj ∧ g]T

This way we eventually reduce it to a form where either Lemma 4.8 applies or some of the previous
outcomes can be exploited.
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Figure 6: pure fixed-point’s projection

Example 4.8. Suppose we have to solve Π2([p]〈S −X1〉⊗5), with n = 4 and the graph modelling p is
represented in Fig. 6, for which X(p) = 3. The monotonicity-bound and the null-bound are uπ2 = lπ2 =
4, so we fall into the category described at the begin of the section. Since X1, X2 are independent we
carry out the rewriting:

[p]〈S −X1〉⊗5 → [X1 = X2 ∧ g]〈S −X1〉⊗5 + [X1 6= X2 ∧ g]〈S −X1〉⊗5

Π2([X
1 = X2 ∧ g]〈S −X1〉⊗5)

[Lm.4.4]−→ [X1 = X2]Π2([p
′]〈S −X1〉⊗5)

where p′’s graph is obtained from that of p (Fig. 6) by merging X1 and X2. Since X(p′) = 4, then
by Corollary 4.2

[p′]〈S −X1〉⊗5

[Cor.4.2]−→ ∅
Instead, due to Lemma 4.8:

Π2([X
1 6= X2 ∧ g]〈S −X1〉⊗5)

Lm.4.8−→ [X1 6= X2]〈S −X1〉⊗2 .
This is also the final result.

General predicates If p is not a single-form then a different set of rules is necessary. If in ex-
pression Πk([p]T ) predicate p is not a single-form, then the tuple’s color class is ordered and p is not
rewritable into a form such that for each i there should be at most one symbol !hXi. In these cases
Lemma 4.8 does not generally hold as well as Rule [7]. An example is expression e3 given at the begin
of Sec. 4.3.4:

e3 : Π1[X
1 6= X2 ∧X1 6=!2X2]〈S −X1−!2X1, S −X1−!2X1〉, n = 4

As consequence of Corollary 4.1, there exists some Xi ∈ V ar(p), with i > k, involved in at least
uπk + ki inequations. We know that a conjunction of inequalities defined on a fixed size, ordered color-
class may be rewritten into a disjunction of equalities. Let Nk = {0, . . . , k}:∧

h∈H⊆Nr−1
Xi 6=!hXj → ∨

h∈Nr−1/H
Xi =!hXj if n = r [11]

Starting from n = lπk , and supposing H maximal, we repeatedly apply rule [11] until p has been
rewritten into a (disjunctive) form for which some of lemma above hold. Because u ∈ N, the procedure
eventually stops. If for a given n = val Lemma 4.3 applies, then the procedure immediately stops
because we are in a monotonic setting.

Consider once again Example 4.7 (the corresponding inequation graph is depicted in Figure 4). We
know that lπ = uπ1 = 3, therefore we just have to treat the case n = 3. We can start rewriting
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X3 6=!X2 ∧X3 6= X2 [11]−−→ X3 =!2X2

After having applied Rule Set [J ], rule [11], and unified symbols related by any equality (according
to the canonical form of filters) a number of times, we finally obtain

[X1 =!2X2 ∧X1 = X3 ∧X1 =!X4]〈S −X1−!X1−!2X1, . . .〉 → ∅

5. Conclusions

This report provides a complete set of rules and the algorithms required to solve in general the com-
position of tuples (that map on sets) in the language defined to represent in a compact way structural
properties of SN models. All the presented extensions have been implemented in the SNexpression tool
within a modular library that may be easily extended with new features.

An ongoing extension of the work presented in this report concerns the possibility to apply the
composition also for tuples that map into multisets (at least when the cardinality of the color classes is
fixed (not parametric).

Several applications of the calculus have been found, and completing the rules to treat the composi-
tion of tuples has opened the possibility to apply the method also to other applications.

One aspect that deserves a deeper investigation is the analysis of the algorithms complexity.
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A. Rule Sets

All the following rewriting rules assume that any required splitting (leading to different forms and as-
sociated constraints) have already been applied. Moreover the tuples in the expressions are already in
constant size form, and all predicates are in conjunctive canonical form (i.e. no further simplification is
needed).

The dots . . . notation is used to indicate any part of tuple or predicate that remains unchanged in the
transformed expression.

The parametric cardinality of class Ci is denoted ni = |Ci|; when needed a constrained range of
possible values for parameter ni shall be defined through a lower and an upper bound denoted [li, ui].
When not specified it is implicitly assumed that li = 2 and ui =∞.

A.1. Rule Sets

The preliminary management of successor is completed by the following intuitive rules. In the following
!kf(a) stands for the linear application of the kth successor to f(a).

Rule Set [C]. (successor operator)

!hf → !(h%k)f if ni = k ∧ (h ≥ k ∨ h < 0)

!h(f ∩ g) → !hf∩!hg

!h(f + g) → !hf+!hg

!hS − f → S−!hf

!r!hf → !h+rf

!0f → f

Some additional rules can be defined, provided that the following assumptions hold true.
Let ci = [lbi, ubi] be the constrained range where for parameter ni. We can assume that after some

preliminary rewriting, given any expression E:

- for each !hXj
i : |h| < lbi

- if lbi = ubi, for each !hXj
i : h ≥ 0

- for each ni verifying c(E), !hXj
i , !mXj

i s.t. h 6= m, c: !hXj
i (c) 6= !mXj

i (c)

Given the above assumption, the following rules can be applied.

Rule Set [D]. (successor’s extra-rules)

!rXj
i ∩!qXj

i → ∅ if r 6= q

!rXj
i ∩ S−!qXj

i →!rXj
i if r 6= q

!rXj
i =!qXj

i → false if r 6= q

!rXj
i 6=!qXj

i → true if r 6= q
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Rule Set [E]. (predicate basic reductions)

Xi 6=!rXj → true if Xi =!kXj ∧ r 6= k

Xi =!rXj ∧Xi =!kXj → false if r 6= k

Xi 6= Xj ∧Xi 6=!Xj . . . ∧Xi 6=!k−1Xj → false if n = k

Rule Set [F ]. (empty intersection form)⋂
!qXj

i ∈A
S−!qXj

i → ∅ if ubi ≤ |A|
⋂
Xj

i ∈A
Si,k

⋂
j S −X

j
i → ∅ if ni,k ≤ |A|

Rule Set [G]. (Intersection between elementary functions)

!rXj
i ∩!qXj

i → ∅ if r 6= q

!rXj
i ∩ S−!qXj

i →!rXj
i if r 6= q

!rXj
i ∩ S−!rXj

i → ∅
!rXj

i =!qXj
i → false if r 6= q

!rXj
i 6=!qXj

i → true if r 6= q

Rule Set [H]. (Reduction of guard predicates in intersection forms)

〈. . . , Xi . . . , . . .〉[Xi ∈ C1,k ∧ . . .] −→ 〈. . . , Xi ∩ S{k} . . . , . . .〉[. . .]
〈. . . , Xi . . . , . . .〉[Xi /∈ C1,k ∧ . . .] −→ 〈. . . , Xi 	 S{k} . . . , . . .〉[. . .]
〈. . . , !hXi . . . , . . . , 〉[Xi =!kXj ∧ . . .] −→ 〈. . . , !hXi∩!h+kXj . . . , . . .〉[. . .]
〈. . . , !hXi . . . , . . . , 〉[Xi 6=!kXj ∧ . . .] −→ 〈. . . , !hXi ∩ S−!h+kXj . . . , . . .〉[. . .]

For example:

〈X1, S −X1〉[X1 6=!X2]
[H]−−→ 〈X1 ∩ S−!X2, S −X1〉

Rule Set [I]. (Reduction of intersection-forms into guard predicates)

〈. . . , Xi ∩ S{k} . . . , . . .〉[. . .] −→ 〈. . . , Xi . . . , . . .〉[Xi ∈ C1,k . . .]

〈. . . , Xi 	 S{k} . . . , . . .〉[. . .] −→ 〈. . . , Xi . . . , . . .〉[Xi /∈ C1,k . . .]

〈. . . , S −Xi ∩ S{k} . . . , . . .〉[. . .] −→ 〈. . . , S −Xi ∩ S{k} . . . , . . .〉[Xi ∈ C1,k . . .]+

〈. . . , S{k} . . . , . . .〉[Xi /∈ C1,k . . .] if¬([. . .]⇒ Xi ∈ C1,k)

〈. . . , !hXi∩!kXj . . . , . . .〉[. . .] −→ 〈. . . , !hXi . . . , . . . , 〉[Xi = !k−hXj . . .]

〈. . . , !hXi ∩ S−!kXj . . . , . . .〉[. . .] −→ 〈. . . , !hXi . . . , . . . , 〉[Xi 6= !k−hXj . . .]

〈. . . , S−!hXi−!kXj . . . , . . .〉[. . .] −→ 〈. . . , S−!hXi−!kXj . . . , . . .〉[Xi 6= !k−hXj . . .]+

〈. . . , S−!hXi . . . , . . .〉[Xi =!k−hXj . . .] if i 6= j

In the following f 	 f ′ ≡ f ∩ (S − f ′). The pattern !kf matches the form f for k =: 0 (!0f ≡ f ).
The first rule-set applies to filters.
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Rule Set [J ]. (Reduction of filter predicates into intersection forms)

[Xi ∈ Ck . . .]〈. . . , fi, . . .〉 → [. . .]〈. . . , fi ∩ Sk, . . .〉
[Xi /∈ Ck . . .]〈. . . , fi, . . .〉 → [. . .]〈. . . , fi 	 Sk, . . .〉

[Xi = !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [. . .]〈. . . , fi, . . . , fj∩!−kfi, . . .〉 if |fi| = 1

[Xi 6= !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [. . .]〈. . . , fi, . . . , fj	!−kfi, . . .〉 if |fi| = 1

[Xi = !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [. . .]〈. . . , fi∩!kfj , . . . , fj , . . .〉 if |fj | = 1

[Xi 6= !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [. . .]〈. . . , fi	!kfj , . . . , fj , . . .〉 if |fj | = 1

[Xi = !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [Xi =!kXj . . .]〈. . . , fi∩!kfj , . . . , fj∩!−kfi, . . .〉
if |fi| > 1 ∧ |fj | > 1 ∧ fi 6≡!kfj

[Xi 6= !kXj . . .]〈. . . , fi, . . . , fj , . . .〉 → [. . .]〈. . . , fi, . . . , fj , . . .〉
if |fi| > 1 ∧ |fj | > 1 ∧ fi∩!kfj ≡ ∅

Rule Set [K]. (Transforming a predicate into a tuple)
Rewriting of basic predicates into intersection forms

Xj
i = Xk

i → 〈. . . ,
jth component︷ ︸︸ ︷
Xj
i ∩Xk

i , . . . ,

kth component︷ ︸︸ ︷
Xk
i ∩Xj

i , . . .〉

Xj
i 6= Xk

i → 〈. . . ,
jth component︷ ︸︸ ︷

Xj
i ∩ S −Xk

i , . . . ,

kth component︷ ︸︸ ︷
Xk
i ∩Xj

i , . . .〉

Xj
i ∈ Ci,l → 〈. . . ,

jth component︷ ︸︸ ︷
Xj
i ∩ Si,l, . . .〉

Xj
i 6∈ Ci,l → 〈. . . ,

jth component︷ ︸︸ ︷
Xj
i ∩ (S − Si,l), . . .〉

Basic predicate d(Xj
i ) = d(Xk

i ) is rewritten as

||Ci||∨
l=1

Xj
i ∈ Ci,l ∧Xk

i ∈ Ci,l

thus:

d(Xj
i ) = d(Xk

i )→
||Ci||∑
l=1

〈. . . ,
jth component︷ ︸︸ ︷

Xj
i ∩ (S − Si,l), . . . ,

kth component︷ ︸︸ ︷
Xk
i ∩ (S − Si,l), . . .〉

The above rules can be generalized to basic predicates involving the successors of the variables.
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B. Composition T ◦ T ′[p] with |V ar(T )| = 1

This section of the Appendix provides with a set of rules that are alternative to those described in Sec.
4.2.2 to solve cases A, B and C and to the rules described in Sec. 4.3.2.

After the application of Rule [3] as described in paragraph Step-1 rewritings: Simplification of the
left-tuple’s form of Sec. 4.2.2 , solving the composition between arbitrary functions is reduced to solve
the composition

T ◦ T ′[p]

with T being a tuple containing intersection-form such that V ar(T ) = {Xj
i }. Moreover we assume

that T ′[p] is a constant size tuple (see Definition 3.2 and Property 1). Under the hypothesis above the
following rewriting holds:

T ◦ T ′[p]→ T
Xj

i←↩X1
i
◦ 〈g〉[p] [12]

where T
Xj

i←↩X1
i

is obtained by replacing Xj
i by X1

i in T , and g is the jth component of color Ci in
T ′.

For sake of readabilty subscript i used in the class functions to denote the color-class will be omitted
with the exception of rules definition.

Example B.1. The following example illustrates the application of the steps above mentioned:
〈S −X1, S −X2, S −X2 ∩X1 ∩X3〉 ◦ 〈S −X1, S, S −X2〉
[3]→
(
〈S −X1, S,X1〉 ∩ 〈S, S −X2, S −X2〉 ∩ 〈S, S,X3〉

)
◦ 〈S −X1, S, S −X2〉

Prop.2→ 〈S − X1, S,X1〉 ◦ 〈S − X1, S, S − X2〉 ∩ 〈S, S − X2, S − X2〉 ◦ 〈S − X1, S, S − X2〉 ∩
〈S, S,X3〉 ◦ 〈S −X1, S, S −X2〉

[12]→ 〈S −X1, S,X1〉 ◦ 〈S −X1〉 ∩ 〈S, S −X1, S −X1〉 ◦ 〈S〉 ∩ 〈S, S,X1〉 ◦ 〈S −X2〉

In the following we will omit Xj ←↩ X1 in the subscript of tuple T , hence we consider tuple T as
unary.

Let T = 〈fi〉i=1,...,k be unary, there are two cases that can be immediately solved:

• if symbol X1 occurs just in position l in T the composition outcome is the tuple obtained from T
by replacing fl with fl ◦ g;

• If |g| = 1 the composition results is 〈fi ◦ g〉i=1,...,k.

However, more generally, disregarding constant functions, other cases whose solving is not straightfor-
ward are possible: namely they are when in tuple T the only intersection forms present are projections
and generalized complements. We consider separately these situations because different set of rules are
applied:

I at least one component of T is a projection;

II no component of T is a projection.
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Case I Let T = 〈fj〉kj=1, if l is the number of X1
i projections, we assume for simplicity the

following re-ordering of T ’s components:

fj =!hjX1
i if j ≤ l ≤ k

fj =
⋂
s∈Hj

S−!sX1
i , if j > l

That is:

〈!h1X1
i , . . . , !

hlX1
i︸ ︷︷ ︸

projections

,

generalized complements︷ ︸︸ ︷⋂
s∈Hl+1

S−!sX1
i , . . . ,

⋂
s∈Hk

S−!sX1
i 〉

Then the following rule holds:
T ◦ 〈g〉 → [p]〈!h1g, S, . . . , S〉 [13]

where filter [p] is in conjunctive normal form and it is defined as follows:

• ∀j = 2, . . . , l there is an equality X1
i =!h1−hjXj

i

• ∀j ∈ l, . . . , k, s ∈ Hj there is an inequality X1
i 6=!h1−sXj

Proof:
To prove the validity of the rewriting rule [13] we use the following properties of the transpose operator:

• (T t)t ≡ T
• (T [p])t ≡ [p]tT t

The transpose T t has the form
〈⋂k

j=1 f
′
j

〉
, where f ′j is obtained from fj by replacing X1 with Xj .

According to rule-set [H] the expression can be rewritten as 〈!h1X1〉[p′], where p′ is a conjunctive form
in which:

• ∀j : 2 . . . l there is an equality X1 =!hj−h1Xj ,

• ∀j : l + 1 . . . k, s ∈ Hj there is an inequality X1 6= !s−h1Xj

By transposing again we get [p]〈!h1X1〉t ≡ T . Since 〈!h1X1〉t ≡ 〈!h1X1, S, . . . , S〉, the composi-
tion T ◦ 〈g〉 results in

[p]〈!h1g, S, . . . , S〉
ut

Observe that the following equivalence holds:
[p]〈!h1g, S, . . . , S〉 → [p]〈fj ◦ g〉kj=1 [14]

because in general 〈fj〉kj=1 ◦ g ⊆ 〈fj ◦ g〉kj=1. The advantage of this representation is that smaller
size functions than S may result as tuple components.

The above result straightforwardly extends to any left tuple containing only one variable symbol.

Example B.2. Application of the alternative rules:
〈X2, S −X2, S −X2 ∩ S−!X2, !X2〉 ◦ 〈X1, S −X1〉 with |C1| ≥ 4
[12]→ 〈X1, S −X1, S −X1 ∩ S−!X1, !X1〉 ◦ 〈S −X1〉
[13]→ [X1 =!−1X4 ∧X1 6= X2 ∧X1 6=!−1X3 ∧X1 6= X3] 〈S −X1, S, S, S〉
[14]→ [X1 =!−1X4 ∧X1 6= X2 ∧X1 6=!−1X3 ∧X1 6= X3] 〈S −X1, S, S, S−!X1〉
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Case II All elements of T are generalized-complements, that is:

T = 〈fj〉kj=1 with fj =
⋂
s∈Hj

S−!sX1
i , |Hj | > 0

It is possible to translate the composition in a solvable form by using the tuple k-projection and the
outcome of the previous Section B.

Consider in fact the tuple Te = 〈T,X1
i 〉, with the same domain as T , and observe that Πk(Te) = T .

Since Te◦〈g〉 ≡ F ∈ L (Section B), we get T ◦〈g〉 ≡ Πk(F ), due to the associativity of the composition.
T ◦ 〈g〉 → Πk(〈T,X1

i 〉 ◦ 〈g〉) [15]

Example B.3. k-projection to solve generalized-complement tuple:
〈S −X1, S −X1 ∩ S−!X1〉 ◦ 〈S −X1〉 |C1| ≥ 4
[15]→ Π2(〈S −X1, S −X1

1 ∩ S−!X1, X1〉 ◦ 〈S −X1〉)
[13]→ Π2([X

1
1 6= X3

1 ∧X2
1 6= X3

1 ∧X2
1 6=!−1X3

1 ]〈S, S, S −X1
1 〉)→ . . .


