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1 DISIT - Università del Piemonte Orientale - Alessandria, Italy -

laura.giordano@uniupo.it
2 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine
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Abstract. We explore the relationships between Description Logics and Set The-

ory. The study is carried on using, on the set-theoretic side, a very rudimentary ax-

iomatic set theory Ω, consisting of only four axioms characterizing binary union,

set difference, inclusion, and the power-set. The approach is then completed defin-

ing ALCΩ , an extension of ALC, in which concepts are naturally interpreted

as sets living in Ω-models. In ALCΩ not only membership between concepts

is allowed—even admitting circularity—but also the power-set construct is ex-

ploited to add metamodeling capabilities. We conclude providing a polynomial

translation of ALCΩ in ALCOI and proving its basic traits, among which the

validity of the finite model property.

1 Introduction

Concept and concept constructors in Description Logics (DLs) allow to manage infor-

mation built-up and stored as collection of elements of a given domain. In this paper we

would like to take the above statement seriously and put forward a DL doubly linked

with a (very simple) set theory. Such a theory will be suitable to manipulate concepts as

first-class citizens, in the sense that it will allow the possibility to have concepts as in-

stances (a.k.a. elements) of other concepts. Actually, the idea of enhancing the language

of description logics with statements of the form C ∈ D, with C and D concepts is not

new, as assertions of the form D(A), with A a concept name, are allowed in OWL-Full

[20]. Here, while we do not consider roles as possible instances of concepts, we would

like to push the approach a little forward, allowing not only the possibility of stating

that an arbitrary concept C can be thought as an instance of another one (C ∈ D), but

also opening up our view on two further directions:

1. the possibility of having a concept as an instance of itself: C ∈ C1;

2. the possibility of talking about all possible sub-concepts of a given concept, adding

a power-set construct Pow(C).

In order to realize our plan we introduce a DL, to be dubbed ALCΩ , whose two parents

are ALC and a rudimentary (finitely axiomatized) set theory Ω.

1 Self membership is allowed for concept names in [16], by assertions of the form a(a)
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Motik has shown in [16] that the semantics of metamodeling adopted in OWL-Full

leads to undecidability already for ALC-Full, due to the free mixing of logical and met-

alogical symbols. In [16], limiting this free mixing but allowing names to be interpreted

as concepts and to occur as instances of other concepts, two alternative semantics (the

Contextual π-semantics and the Hilog ν-semantics) are proposed for metamodeling and

the decidability of SHOIQ extended with metamodeling is proved under either seman-

tics.

Starting from [16], many other approaches to metamodeling have been proposed

in the literature. Most of them [6, 11, 14, 9] are based on a Hilog semantics, while [19,

17] define extensions of OWL DL and of SHIQ (respectively), based on semantics

interpreting concepts as well-founded sets. Here, we propose an extension of ALC with

power-set and membership axioms among concepts, whose semantics is naturally de-

fined using sets living in Ω-models (not necesarily well-founded). We show that the

power-set construct in ALCΩ allows to capture in a natuaral way the interactions be-

tween concepts and metaconcepts.

We prove that ALCΩ is decidable by defining, for any ALCΩ knowledge base K ,

a polynomial translation KT into ALCOI , exploiting the correspondence studied in

[5] between the membership relation in the set theory and a normal modality. We show

that the translation KT enjoys the finite model property and we exploit it in the proof

of completeness of the translation. From the translation in ALCOI we also get an EX-

PTIME upper bound on the complexity of satisfiability in ALCΩ . Interestingly enough,

our translation has strong relations with the first-order reduction used in [8, 11, 14].

2 Preliminaries

2.1 The description logics ALC and ALCOI

Let NC be a set of concept names, NR a set of role names and NI a set of individual

names. The set C of ALC concepts can be defined inductively as follows:

– A ∈ NC , ⊤ and ⊥ are concepts in C;

– if C,D ∈ C and R ∈ NR, then C ⊓D,C ⊔D,¬C, ∀R.C, ∃R.C are concepts in C

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an ABox.

The TBox T is a set of concept inclusions (or subsumptions) C ⊑ D, where C,D are

concepts in C. The ABox A is a set of assertions of the form C(a) and R(a, b) where

C is a concept, R ∈ NR, and a, b ∈ NI .

An interpretation for ALC [2] is a pair I = 〈∆, ·I〉 where:

– ∆ is a domain, whose elements are denoted by x, y, z, . . . ;

– ·I is an extension function that maps each concept name C ∈ NC to a set CI ⊆ ∆,

each role name R ∈ NR to a binary relationRI ⊆ ∆×∆, and each individual name

a ∈ NI to an element aI ∈ ∆; the function ·I is extended to complex concepts as

follows:

⊤I = ∆

⊥I = ∅
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(¬C)I = ∆\CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I = {x ∈ ∆ | ∀y.(x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ RI and y ∈ CI}

The notion of satisfiability of a KB in an interpretation is defined as follows:

Definition 1 (Satisfiability and entailment). Given anALC interpretation I = 〈∆, ·I〉:
- I satisfies an inclusion C ⊑ D if CI ⊆ DI ;

- I satisfies an assertion C(a) if aI ∈ CI ;

- I satisfies an assertion R(a, b) if (aI , bI) ∈ RI .

Given a knowledge base K = (T ,A), an interpretation I satisfies T (resp. A) if I

satisfies all inclusions in T (resp. all assertions in A); I is a model of K if I satisfies

T and A.

Let a query F be either an inclusion C ⊑ D (where C and D are concepts) or an

assertion C(a). F is entailed by K , written K |= F , if for all models I =〈∆, ·I〉 of K ,

I satisfies F .

Given a knowledge baseK , the subsumption problem is the problem of deciding whether

an inclusion C ⊑ D is entailed by K . The instance checking problem is the problem of

deciding whether an assertion C(a) is entailed by K . The concept satisfiability problem

is the problem of deciding, for a concept C, whether C is consistent with K (i.e., there

is a model I of K , such that CI 6= ∅).

In the following we will also consider the description logic ALCOI allowing in-

verse roles and nominals. For a role R ∈ NR, its inverse is a role, denoted by R−,

which can be used in existential and universal restrictions with the following semantics:

(x, y) ∈ (R−)I if and only if (y, x) ∈ RI . For a named individual a ∈ NI , the nominal

{a} is a concept with the following semantics: ({a})I = {aI}.

2.2 The theory Ω

The first-order theory Ω consists of the following four axioms in the language with

relational symbols ∈ and ⊆, and functional symbols ∪, \, Pow :

x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z;

x ∈ y\z ↔ x ∈ y ∧ x 6∈ z;

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y);

x ∈ Pow (y) ↔ x ⊆ y.

In an Ω-model everything is supposed to be a set. Hence, a set will have (only)

sets as its elements and circular definition of sets are allowed (such as a set admitting

itself as one of its elements) are not forbidden. Moreover, not postulating in Ω any

link between membership ∈ and equality—in axiomatic terms, having no extensionality

(axiom)—Ω-models in which there are different sets with equal collection of elements,

are admissible.
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The most natural Ω-model—in which extensionally different sets are, in fact, al-

ways different— is the collection of well-founded sets HF = HF
0 =

⋃

n∈N
HFn, where:

HF0 = ∅;

HFn+1 = Pow (HFn).

In HF
0

every system of set-theoretic equations of the form:



















x1 = {x1,1, . . . , x1,m1
};

x2 = {x2,1, . . . , x2,m2
};

...
...

xn = {xn,1, . . . , xn,mn
},

where xi,j for j = 1, . . . ,mi is one among x1, . . . xi−1, finds a unique solution.

If we drop the index-ordering restriction on variables appearing in the right-hand-

side of set-theoretic equations (e.g allowing equations such as x = {x}), in order to

guarantee the existence of solutions in the model we need to work with larger universes.

The most natural (and minimal) among them is a close relative of HF0 and goes under

the name of HF
1/2

(see [1, 18]).

Finally, a further enrichment of both HF
0 and HF

1/2 is obtained by adding atoms,

that is copies of the empty-set, to be denoted by a1, a2, . . . and collectively repre-

sented by A = {a1, a2, . . .}. The resulting universes will be denoted by HF
0(A) and

HF
1/2(A).
A complete discussion relative to universes of sets to be used as models of Ω goes

beyond the scope of this paper. However, it is convenient to point out that, in all cases

of interest for us here, an especially simple view of Ω-models can be given using finite

graphs. Actually, HF0 or HF1/2 can be seen as the collection of finite (either acyclic

or cyclic) graphs where sets are represented by nodes and arcs depict the membership

relation among sets (see [18]). Given one such membership graph G it is useful to

single out a special node (the point of the graph), to isolate the specific set for which

the description is introduced.

In the next section, we will regard the domain∆ of a DL interpretation as a fragment

of the universe of an Ω-model, i.e. ∆ will be regarded as a set of sets of the theory Ω

rather than as a set of individuals, as usual in description logics.

3 The description logic ALC
Ω

We start from the observation that in ALC concepts are interpreted as sets (namely, sets

of domain elements) and we generalize ALC by allowing concepts to be interpreted as

sets of the set theory Ω. In addition, we extend the language of ALC by introducing

the power-set constructor as a new concept constructor, and by allowing membership

relations among concepts to occur in the knowledge base. We call ALCΩ the resulting

extension of ALC.

As before, let NI , NC , and NR be the set of individual names, concept names,

and role names in the language, respectively. In building complex concepts, in addition
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to the constructs of ALC , we also consider the difference \ and the power-set Pow

constructs.

The set of ALCΩ concepts are defined inductively as follows:

– A ∈ NC , ⊤ and ⊥ are ALCΩ concepts;

– if C,D are ALCΩ concepts and R ∈ RC , then

C ⊓D,C ⊔D,¬C,C\D,Pow(C), ∀R.C, ∃R.C

are ALCΩ concepts.

While the concept C\D can be easily defined as C⊔¬D in ALC, this is not the case for

the concept Pow(C). Informally, the instances of concept Pow(C) are all the subsets of

the instances of concept C.

Besides ABox assertions of the form C(a) with a ∈ NI , we allow in the ABox

concept membership axioms and role membership axioms, respectively, of the form:

C ∈ D and (C,D) ∈ R,

where C and D are ALCΩ concepts and R is a role name.

Considering an example taken from [22, 16], in the language of ALCΩ we can

represent the fact that eagles are in the red list of endangered species, by the axiom

Eagle ∈ RedListSpecies , and that Harry is an eagle, by the assertion Eagle(harry).
Observe that nothing prevents us from having a concept which includes itself as an in-

stance, as specified by the axiom C ∈ C. Using self-membership we sgnificantly gain

in expressivity: consider the concept notModifiableList, consisting of those list that

cannot be modified (if not by, say, a specifically enforced law); certainly, for example,

it would be reasonable to ask RedListSpecies ∈ notModifiableList but, more interest-

ingly, we would also clearly want notModifiableList ∈ notModifiableList . Observe

also that the additional expressivity of the language, in which general concepts (and

not only concept names) can be instances of other concepts, allows for instance to rep-

resent the fact that polar bears are in the red list of endangered species, by the axiom

Polar ⊓ Bear ∈ RedListSpecies . We can further represent the fact the polar bears are

more endangered than eagles by adding a role moreEndangered and the role member-

ship axiom (Polar ⊓ Bear ,Eagle) ∈ moreEndangered .

The presence of the power-set constructor is useful to represent statements such

as “all the instances of species in the Red List are not allowed to be hunted”. By the

concept inclusion axiom:

RedListSpecies ⊑ Pow(CannotHunt),

all the instances of classes in the RedListSpecies (such as Eagle) cannot be hunted. As

shown in [16], the meaning of the sentence above could be captured by combining the

ν-semantics with SWRL [12], but not by the ν-semantics alone.

We define a semantics for ALCΩ by extending the ALC semantics in Section 2.1 to

capture the meaning of concepts (including concept Pow(C)) as elements (sets) of the

domain ∆, chosen as a transitive set (i.e. a set x satisfying (∀y ∈ x)(∀z ∈ y)(z ∈ x))
in a model of Ω. Roles are interpreted as binary relations over the domain ∆. Individual

names are interpreted as elements of a set of atoms A from which the sets in ∆ are built.
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Definition 2. An interpretation for ALCΩ is a pair I = 〈∆, ·I〉 over a set of atoms A

where:

– the non-empty domain ∆ is a transitive set chosen in a model M of Ω over the

atoms in A;2

– the extension function ·I maps each concept name A ∈ NC to an element AI ∈ ∆;

each role name R ∈ NR to a binary relation RI ⊆ ∆ × ∆; and each individual

name a ∈ NI to an element aI ∈ A ⊆ ∆.

The function ·I is extended to complex concepts of ALCΩ as follows:

⊤I = ∆

⊥I = ∅
(¬C)I = ∆\CI

(C ⊓D)I = (CI ∩DI) ∩∆

(C ⊔D)I = (CI ∪DI) ∩∆

(C\D)I = (CI\DI) ∩∆

(Pow(C))I = Pow (CI) ∩∆

(∀R.C)I = {x ∈ ∆ | ∀y((x, y) ∈ RI → y ∈ CI)}
(∃R.C)I = {x ∈ ∆ | ∃y((x, y) ∈ RI ∧ y ∈ CI)}

The semantics of usual DL concept constructs is defined as the standard one, save for

the fact that ∆ (which is a fragment of the domain of a model of Ω) is not guaranteed

to be closed under union, intersection, etc. This is the reason why the intersection with

∆ is to be added (on the right hand side of each item) when defining the interpretation

of complex concepts.

Given an interpretation I , the satisfiability of inclusions and assertions is defined as

in an ALC interpretation (Definition 1). Satisfiability of (concept and role) membership

axioms in an interpretation I is defined as follows: I satisfies C ∈ D if CI ∈ DI ; I

satisfies (C,D) ∈ R if (CI , DI) ∈ RI . With this addition, the notions of satisfiability

of a KB and of entailment in ALCΩ (denoted by |=ALCΩ ) can be defined as in Section

2.1.

The problem of instance checking in ALCΩ includes both the problem of verifying

whether an assertion C(a) is a logical consequence of the KB and the problem of veri-

fying whether a membership C ∈ D is a logical consequence of the KB (i.e., whether

C is an instance of D).

In the next section, we define a polynomial encoding of the language ALCΩ into

the description logic ALCOI .

4 Translation of ALC
Ω into ALCOI

We define a translation of the logic ALCΩ into the description logic ALCOI , including

inverse roles and nominals. In [5] the membership relation ∈ is used to represent a

2 In the following, for readability, we will denote by ∈, Pow , ∪, \ (rather than Pow
M, ∪M,

\M) the interpretation in a model M of the predicate and function symbols ∈, Pow , ∪, \,

respectively.
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normal modality R. In this section, vice-versa, we exploit the correspondence between

∈ and the accessibility relation of a modality by introducing a new (reserved) role e in

NR to represent the inverse of the membership relation: in any interpretation I , (x, y) ∈
eI will stand for y ∈ x. The idea underlying the translation is that each element u of

the domain ∆ in an ALCOI interpretation I = 〈∆, ·I〉 can be regarded as the set of all

the elements v such that (u, v) ∈ eI .

The translation of a knowledge base K = (T ,A) of ALCΩ into ALCOI can be

defined as follows. First, we associate each concept C of ALCΩ to a concept CT of

ALCOI by replacing all occurrences of the power-set constructor Pow with a concept

involving the universal restriction ∀e (see below). More formally, we (inductively) de-

fine the translated CT of C by simply recursively replacing every subconcept Pow(D)
appearing in C by ∀e.DT , while the translation T commutes with concept constructors

in all other cases, as follows:

⊤T = ⊤, ⊥T = ⊥
BT = B, for B ∈ NC

(¬C)T = ¬CT

(C1 ⊓ C2)
T = CT

1 ⊓ CT
2

(C1 ⊔ C2)
T = CT

1 ⊔ CT
2

(C\D)T = CT ⊓ ¬DT

Pow(D) = ∀e.DT

(∃R.D)T = ∃R.DT

(∀R.D)T = ∀R.DT

Semantically this will result in interpreting any (sub)concept (Pow(D))I by

(∀e.D)I = {x | ∀y((x, y) ∈ eI → y ∈ DI)},

which, recalling that (x, y) ∈ eI stands for y ∈ x, will characterize the collection of

(admissible) subsets of DI :

(∀e.D)I = {x ∈ ∆ | ∀y(y ∈ x → y ∈ DI)},

that is,

(∀e.D)I = {x ∈ ∆ | x ⊆ DI)} = Pow(DI) ∩∆ = (Pow(D))I ,

as expected.

4.1 Translating TBox, ABox, and queries

We define a new TBox, T T , by introducing, for each inclusion C ⊑ D in T , the in-

clusion CT ⊑ DT in T T . Additionally, for each (complex) concept C occurring in the

knowledge base K (or in the query) on the l.h.s. of a membership axiom C ∈ D or

(C,D) ∈ R, we extend NI with a new individual name3 eC and we add the concept

equivalence:

C ≡ ∃e−.{eC} (1)

3 The symbol eC should remind the e-xtension of C.
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in T T . From now on, new individual names such as eC will be called concept individual

names. This equivalence is intended to capture the property that, in all the models I =
〈∆, ·I〉 of KT , eIC is in relation eI with all and only the instances of concept C, i.e., for

all y ∈ ∆, (eIC , y) ∈ eI if and only if y ∈ CI .

As in the case of the power-set constructor, this fact can be verified by analyzing

the semantics of ∃e−.{eC}:

(∃e−.{eC})
I = {x ∈ ∆ | ∃y((x, y) ∈ (e−)I ∧ y ∈ ({eC})

I},

which, recalling that e stands for ∋ and interpreting the nominal, will stand for

(∃e−.{eC})
I = {x ∈ ∆ | ∃y(x ∈ y ∧ y ∈ {eIC}} = {x ∈ ∆ | x ∈ eIC},

which, by the concept equivalence C ≡ ∃e−.{eC}, is as to say that eIC and CI have the

same extension.

Remark 1. It is important to notice that every concept individual name of the sort eC
introduced above—that is, every individual name whose purpose is that of providing

a name to the extension of CI—, in general turns out to be in relation e with other

elements of the domain ∆ of I (unless C is an inconsistent concept and its extension is

empty). This is in contrast with the assumption relative to other “standard” individual

names a ∈ NI , for which we will require (¬∃e.⊤)(a) (see below).

We define AT as the set of assertions containing:

– for each concept membership axiom C ∈ D in A, the assertion DT (eC),
– for each role membership axiom (C,D) ∈ R in A, the assertion R(eC , eD),
– for each assertion D(a) in A, the assertion DT (a),
– for each assertion R(a, b) in A, the assertion R(a, b) and, finally,
– for each (standard) individual name a ∈ NI , the assertion (¬∃e.⊤)(a).

As noticed above, the last requirement forces all named individuals (in the language

of the initial knowledge base K) to be interpreted as domain elements which are not in

relation e with any other element.

LetKT = (T T ,AT ) be the knowledge base obtained by translatingK intoALCOI.

Example 1. Let K = (T ,A) be the knowledge base considered above:

T = {RedListSpecies ⊑ Pow(CannotHunt)} and

A = {Eagle(harry),Eagle ∈ RedListSpecies , Polar ⊓ Bear ∈ RedListSpecies}.

By the translation above, we obtain:

T T = {RedListSpecies ⊑ ∀e.CannotHunt ,,
Eagle ≡ ∃e−.{eEagle}, Polar ⊓ Bear ≡ ∃e−.{ePolar⊓Bear}}

AT = {Eagle(harry),RedListSpecies(eEagle ),RedListSpecies(ePolar⊓Bear )},

KT entails CannotHunt(harry) in ALCOI . In fact, from RedListSpecies(eEagle)
and RedListSpecies ⊑ ∀e.CannotHunt , it follows that, in all models of KT , eIEagle

∈ (∀e.CannotHunt)I . Furthermore, from Eagle ≡ ∃e−.{eEagle} and the assertion

Eagle(harry), it follows that (eIEagle , harry
I ) ∈ eI holds. Hence, harryI ∈CannotHunt I .

As this holds in all models of KT , CannotHunt(harry) is a logical consequence of

KT . It is easy to see that Eagle ⊑ CannotHunt follows from KT as well.
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Let F be a query of the form C ⊑ D, C(a) or C ∈ D. We assume that all the

individual names, concept names and role names occurring in F also occur in K and

we define a translation FT of the query F as follows:

– if F is a subsumption C ⊑ D, then FT is the subsumption CT ⊑ DT ;

– if F is an assertion C(a), then FT is the assertion CT (a);
– if F is a membership axiom C ∈ D, then FT is the assertion DT (eC).

In the following we prove the soundness and completeness of the translation of an

ALCΩ knowledge base into ALCOI .

Proposition 1 (Soundness of the translation). The translation of an ALCΩ knowl-

edge base K = (T ,A) into ALCOI is sound, that is, for any query F :

KT |=ALCOI FT ⇒ K |=ALCΩ F.

Proof. By contraposition, assume K 6|=ALCΩ F and let I = 〈∆, ·I〉 be a model of K

in ALCΩ that falsifies F 4. We build an ALCOI interpretation I ′ = 〈∆′, ·I
′

〉, which is

going to be a model of KT falsifying F in ALCOI , by letting:

– ∆′ = ∆;

– for all B ∈ NC , BI′

= BI ;

– for all roles Rj ∈ NR, RI′

j = RI
j ;

– for all x, y ∈ ∆′, (x, y) ∈ eI
′

if and only if y ∈ x;

– for all (standard) individual name a ∈ NI , aI
′

= aI ∈ A;

– for all eC ∈ NI , eI
′

C = CI ∈ ∆′;

Observe that the set CI′

is a subset of ∆′, as ∆′ = ∆ is a transitive set and therefore it

includes as a subset each element in ∆. Also, each element aI ∈ A belongs to ∆ and

hence to ∆′.

We can prove by induction on the structure of concepts that, for all x ∈ ∆′,

x ∈ (CT )I
′

if and only if x ∈ CI (2)

For the base case, the property above holds by definition for all concepts names in

NC , as well as for C = ⊤ and C = ⊥ (given that ⊤T = ⊤ and ⊥T = ⊥).

For the inductive step, let C = C1⊓C2 and let x ∈ ((C1⊓C2)
T )I

′

= (CT
1 ⊓CT

2 )I
′

,

for some x ∈ ∆′. As I ′ is an ALCOI interpretation, x ∈ (CT
1 )

I′

and x ∈ (CT
2 )

I′

and

since by induction (2) holds for concepts C1 and C2, we have x ∈ CI
1 and x ∈ CI

2 .

Therefore, x ∈ (CI
1 ∩CI

2 )∩∆—since x ∈ ∆′ = ∆—from which, by definition ALCΩ

interpretation, x ∈ (C1 ⊓ C2)
I . It is easy to see that the vice-versa also holds, i.e., if

x ∈ (C1 ⊓ C2)
I then x ∈ ((C1 ⊓ C2)

T )I
′

.

4 Observe that, on the grounds of Proposition 2 below, we could safely assume the domain ∆

to be essentially a transitive set in the standard model HF1/2(A) of Ω, (i.e. the collection of

hereditarily finite rational hypersets over atoms in A). As a matter of fact, the domain ∆ is (a

graph) obtained duplicating sets (nodes) representing extensionally equal but pairwise distinct

sets/elements.
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For the case C = Pow(D), let x ∈ ((Pow(D))T )I
′

= (∀e.DT )I
′

, for some x ∈ ∆′.

As I ′ is an ALCOI interpretation, for all y ∈ ∆′, if (x, y) ∈ eI
′

then y ∈ (DT )I
′

.

By construction of I ′, (x, y) ∈ eI
′

if and only if y ∈ x and, by inductive hypothesis,

y ∈ (DT )I
′

if and only if y ∈ DI . Hence, in I , for all y ∈ ∆ such that y ∈ x, y ∈ DI .

Therefore, x ⊆ DI , that is x ∈ Pow (DI). Moreover, as x ∈ ∆, x ∈ Pow (DI) ∩∆,

and therefore, by definition of ALCΩ interpretation, x ∈ (Pow(D))I . The vice-versa

can be proved similarly.

Let us consider the case C = ∃R.D. Let x ∈ ((∃R.D)T )I
′

for some x ∈ ∆′. As

x ∈ (∃R.DT )I
′

and I ′ is an ALCOI interpretation, there is a y ∈ ∆′ such that (x, y) ∈
RI′

and y ∈ DI′

. By inductive hypothesis, y ∈ DI . Furthermore, by construction of

I ′, it must be that (x, y) ∈ RI and x ∈ ∆. Hence, x ∈ (∃R.D)I . The vice-versa can be

proved similarly as well as all the other cases for the concept C.

All the other cases are proved in a similar way.

Using (2) we can now check that all the axioms and assertions in KT hold in I ′.

For an inclusion axiom CT ⊑ DT ∈ T T , the corresponding inclusion axiom C ⊑
D is in T . If x ∈ (CT )I

′

for some x ∈ ∆′, by (2) x ∈ CI and, by the inclusion

C ⊑ D ∈ T , x ∈ DI . Hence, again by (2), x ∈ (DT )I
′

.

For each assertion DT (a) ∈ AT , obtained from the translation of the assertion

D(a) ∈ A. From the fact that D(a) is satisfied by I , i.e. aI ∈ DI , given property (2),

it follows that aI
′

= aI ∈ (DT )I
′

.

For each assertion DT (eC) ∈ AT obtained from the translation of a membership

axiom C ∈ D, from the fact that I is a model of K , we know that CI ∈ DI holds.

We want to show that eI
′

C ∈ (DT )I
′

. As, by construction, eI
′

C = CI ∈ ∆ = ∆′, from

CI ∈ DI , it follows that eI
′

C ∈ DI . By property (2), eI
′

C ∈ (DT )I
′

.

For each assertion R(eC , eD) ∈ AT obtained from the translation of a role mem-

bership axiom (C,D) ∈ R, from the fact that I is a model of K , we know that

(CI , DI) ∈ RI holds. We want to show that (eI
′

C , eI
′

D) ∈ RI′

. As, by construction,

eI
′

C = CI ∈ ∆ = ∆′ and eI
′

D = DI ∈ ∆ = ∆′ from (CI , DI) ∈ RI , it follows that

(eI
′

C , eI
′

D) ∈ RI . By the definition of role interpretation in I ′, (eI
′

C , eI
′

D) ∈ RI′

.

For each assertion (¬∃e.⊤)(a), for a ∈ NI , it is easy to see that aI
′

6∈ (∃e.⊤)I
′

, as

aI
′

= aI ∈ A and an element of A in ∆ can be regarded as an empty set. As there is no

y ∈ aI , by construction of the model I ′, there is no y such that (aI
′

, y) ∈ eI
′

.

In a similar way it is easy to show that, for any query F , FT is satisfied in I ′ if and

only if F is satisfied in I .

To conclude the proof, we still need to show that the axiom CT ≡ ∃e−.{eC} is

satisfied in I ′ for all the concepts C occurring in K on the l.h.s. of membership axioms.

Let x ∈ (CT )I
′

. By property (2), x ∈ CI and, by construction, eI
′

C = CI ∈ ∆. We

want to show that x ∈ (∃e−.{eC})I
′

, i.e. that (eI
′

C , x) ∈ eI
′

. By the definition of eI
′

in

the ALCOI interpretation I ′, (eI
′

C , x) ∈ eI
′

if and only if x ∈ eI
′

C . But this immediately

follows from the previous conclusions that: x ∈ CI and eI
′

C = CI . ✷

Before proving the completeness of the translation ofALCΩ into ALCOI, we show

that, if the translation KT of a knowledge base K in ALCΩ has a model in ALCOI ,

then it also has a finite model.
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Proposition 2. Let K be a knowledge base in ALCΩ and let KT be its translation in

ALCOI . If KT has a model in ALCOI , then it has a finite model.

Proof. We prove this result by providing an alternative (but equivalent) translation

KT (¬) of K in the description logic ALC(¬), using a single negated role ¬e.

ALC(¬) extends ALC with role complement operator, where, for any role R, the

role ¬R is the negation of role R, where (x, y) ∈ (¬R)I if and only if (x, y) 6∈ RI .

In the translation, we exploit ¬e to capture non-membership, where (x, y) ∈ (¬e)I if

and only if (x, y) 6∈ eI (i.e., in set terms, y 6∈ x). Decidability of concept satisfiability

in ALC(¬) has been proved by Lutz and Sattler in [15]. The finite model property

of a language with a single negated role ¬e can be proved as done in [7] (Section 2)

for a logic with the “window modality”, by standard filtration, extended to deal with

additional K-modalities (for the other roles) as in the proof in [3]. Indeed, as observed

in [15], the “window operator” studied in [7] is strongly related to a negated modality,

as φ can be written as [¬R]¬φ.

The translationKT (¬) can be defined modifyingKT by replacing the concept equiv-

alence C ≡ ∃e−.{eC} with the assertions: (∀e.C)(eC) and (∀(¬e).(¬C))(eC ).
One can show that any model I = (∆, ·I) di KT (¬) is a model KT in ALCOI ,

and vice-versa, (considering the usual interpretation of negated roles, inverse roles and

nominals). In fact, the semantic meaning of the assertion (∀e.C)(eC) is the following:

for all x ∈ ∆, (eIC , x) ∈ eI ⇒ x ∈ CI ,

which is equivalent to the meaning of ∃e−.{eC} ⊑ C. Also, the semantic meaning of

the assertion (∀(¬e).(¬C))(eC ) :

for all x ∈ ∆, (eIC , x) 6∈ eI ⇒ x 6∈ CI ,

i.e., for all x ∈ ∆, x ∈ CI ⇒ (eIC , x) ∈ eI ,

is equivalent to the semantic meaning of C ⊑ ∃e−.{eC}.

We conclude the proof by observing that, if KT has a model, it is a model of KT (¬).

Then, by the finite model property, KT (¬) must have a finite model which is, in turn, a

finite model of KT . ✷

To conclude our analysis we now prove the completeness of our translation.

Proposition 3 (Completeness of the translation). The translation of an ALCΩ knowl-

edge base K = (T ,A) into ALCOI is complete, that is, for any query F :

K |=ALCΩ F ⇒ KT |=ALCOI FT .

Proof. We prove the completeness of the translation by contraposition. Let KT 6|=ALCOI

FT . Then there is a model I = 〈∆, ·I〉 of KT in ALCOI such that I falsifies F .

We show that we can build a model J = 〈Λ, ·J〉 of K in ALCΩ . where the domain

Λ is a transitive set in the universe HF
1/2(A) consisting of all the hereditarily finite

rational hypersets built from atoms in A = {a0, a1, . . .}.

We define Λ starting from the graph5 G = 〈∆, eI〉, whose nodes are the elements

of ∆ and whose arcs are the pairs (x, y) ∈ eI . Notice that, by Proposition 2, the graph

5 Strictly speaking the graph G introduced here is not really necessary: it is just mentioned to

single out the membership relation ∈ from e
I more clearly.
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G can be assumed to be finite. Intuitively, an arc from x to y in G stands for the fact

that y ∈ x.

At this point, let ∆0 = {d1, . . . , dm} be the elements of ∆ which, in the model

I = 〈∆, ·I〉, are not in relation eI with any other element in ∆ and are non equal to the

interpretation of any concept individual name eC (that is, dj ∈ ∆0 iff there is no y such

that (dj , y) ∈ eI and there is no concept C such that dj = eIC ). For any given d ∈ ∆

we define the following hyperset M(d):

M(d) =

{

ak if d = dk ∈ ∆0,
{

M(d′) | (d, d′) ∈ eI
}

otherwise.
(3)

Observe that, for the concepts C occurring on the l.h.s. of membership axioms, as ax-

iom CT = ∃e−.{eC} is satisfied in the model I of KT , it holds that d′ ∈ (CT )I iff

(eIC , d
′) ∈ eI . Therefore, for d = eIC , M(d) = M(eIC) =

{

M(d′) | (eIC , d
′) ∈ eI

}

=
{

M(d′) | d′ ∈ (CT )I
}

.

The above definition uniquely determines hypersets in HF
1/2(A). This follows from

the fact that all finite systems of (finite) set-theoretic equations have a solution in

HF
1/2(A). As a matter of fact, whenever the graph G is acyclic, the definition of M(d)

identifies a standard (recursively given) hereditarily finite set6.

Our task now is to complete the definition of J = 〈Λ, ·J〉 in such a way to prove

that J is a model of K in ALCΩ falsifying F . The definition is completed as follows:

– Λ = {M(d) | d ∈ ∆};

– for all B ∈ NC , BJ = {M(d) | d ∈ BI};
– for all roles Rj ∈ NR such that Rj 6= e, RJ

j = {(M(d),M(d′)) | (d, d′) ∈ RI
j};

– for all standard name individuals a ∈ NI such that aI = dk, let aJ = M(dk) =
ak ∈ A.

We can now prove, by induction on the structural complexity of concepts, that the fol-

lowing holds:

M(x) ∈ CJ if and only if x ∈ (CT )I . (4)

The base case for concept names, ⊤, and ⊥ is trivial. In particular, for the case

C = B ∈ NC , by definition of J , M(x) ∈ BJ iff x ∈ BI . As BT = B, then

x ∈ (BT )I . Similarly for C = ⊤ and for C = ⊥, as ⊤T = ⊤, and ⊥T = ⊥.

The inductive step in case C = C1 ⊓ C2 follows directly from the inductive hy-

pothesis. If M(x) ∈ (C1 ⊓ C2)
J , then M(x) ∈ CJ

1 and M(x) ∈ CJ
2 . By inductive

hypothesis , x ∈ (CT
1 )

I and x ∈ (CT
2 )

I . Hence, x ∈ ((C1 ⊓ C2)
T )I . The vice-versa is

proved similarly.

The cases in which C = (∃R.D) or C = (∀R.D), are also straightforward. We

only consider the case C = (∃R.D). If M(x) ∈ (∃R.D)J , then there is a M(d) ∈ Λ

such that: (M(x),M(d)) ∈ RJ and M(d) ∈ DJ . By inductive hypothesis, d ∈ (DT )I

and, by definition of J , (x, d) ∈ RI . Hence, x ∈ ((∃R.D)T )I .

6 More generally, when e
I is a well-founded relation, M(·) is a set-theoretic “rendering” of eI :

the so-called Mostowski collapse of eI (see [13]).
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For the case C = Pow(D), by definition of translation, we have that:

(CT )I = (Pow(DT ))I = (∀e.DT )I = {x ∈ ∆ | ∀y((x, y) ∈ eI → y ∈ (DT )I}

and

CJ = (Pow(D))J = Pow(DJ ) ∩ Λ.

Consider M(x) ∈ Pow(DJ ) ∩ Λ, which is as to say that x ∈ ∆ and M(x) ⊆ DJ .

All the elements of M(x) are of the form M(y) for some y ∈ ∆, therefore we have

that:

∀M(y)(M(y) ∈ M(x) → M(y) ∈ DJ ),

which, by definition of M(·) and by inductive hypothesis, means that:

∀y((x, y) ∈ eI → (DT )I(y),

which proves (4) in this case.

We can now use (4) to prove that axioms and assertions in K are satisfied in J .

The cases C ⊑ D and D(a), with C,D concepts of ALCΩ and a ∈ NI , follow

directly from (4), from the definition of M(·) and from the fact that CT ⊑ DT and

DT (a) (respectively) are satisfied in the model I of KT .

For each membership axiom C ∈ D in K , we have to show that CJ ∈ DJ . As the

assertion DT (eC) is in KT and is satisfied in I , we have eIC ∈ (DT )I . Hence, from (4),

M(eIC) ∈ DJ . As we have seen above, M(eIC) =
{

M(d′) | d′ ∈ (CT )I
}

and, again

from (4), M(eIC) = CJ . Thus CJ ∈ DJ .

For each role membership axiom (C,D) ∈ R inK , we have to show that (CJ , RI) ∈
RJ . As the assertion R(eC , eD) is in KT and is satisfied in I , we have (eIC , e

I
D) ∈ RI .

Hence, from the definition of RJ , (M(eIC),M(eID)) ∈ RJ . As we have seen above,

M(eIC) =
{

M(d′) | d′ ∈ (CT )I
}

and, from (4), M(eIC) = CJ . Similarly, M(eID) =
DJ . Thus (CJ , DJ) ∈ RJ . ✷

As the translation of ALCΩ into ALCOI is polynomial (actually, linear) in the size

of the knowledge base (and of the query) the following complexity result follows.

Proposition 4. Satisfiability in ALCΩ is an EXPTIME-complete problem.

The hardness comes from the EXPTIME-hardness of satisfiability in ALC [21]. The

upper bound comes from the EXPTIME upper bound for SHOI [10].

5 Conclusions and related work

In this paper we have shown that the similarities between description logics and set

theory can be exploited to introduce in DLs the new power-set construct and to allow

for (possibly circular) membership relationships among arbitrary concepts. We have

defined the description logic ALCΩ , combining ALC with the set theory Ω, and de-

fined its semantics whose interpretation domains are fragments of the domains of Ω-

models. ALCΩ allows membership axioms among concepts as well as the power-set
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construct which, up to our knowledge, has not been considered for description logics

before. We have shown that an ALCΩ knowledge base can be polynomially translated

into an ALCOI knowledge base. Soundness and completeness of the translation pro-

vide, besides decidability, an EXPTIME upper bound for satisfiability in ALCΩ .

The power-set construct allows to capture in a very natural way the interactions

between concepts and metaconcepts, adding to the language of ALC the expressivity

of metamodelling. The issue of metamodelling has been analysed by Motik in [16],

proving that metamodelling in ALC-Full is already undecidable due to free mixing

of logical and metalogical symbols. Two decidable semantics, a contextual π semantics

and a Hilog ν-semantics, are introduced in [16] for a language extending SHOIQ with

metamodelling, where concept names, role names and individual names are not disjoint.

This possibility of using the same name in different contexts is introduced in OWL

1.1 and then in OWL 2 through punning7. As a difference, in this paper, we consider

concept names, role names and individual names to be disjoint, we allow concepts (and

not only concept names) to be instances of other concepts, by membership axioms,

while we do not allow role names as instances.

As in [16], DeGiacomo et al. [6] and Homola et al. [11] employ an Hilog-style

semantics to define Hi(SHIQ) and T H(SROIQ), respectively. While [16] and [6]

define untyped higher-order languages which, as ALCΩ , allow a concept to be an in-

stance of itself, [11] defines a typed higher-order extension of SROIQ allowing for

a hierarchy of concepts, where concept names of order t can only occur as instances

of concepts of order t + 1. In T H(SROIQ) [11] there is a strict separation between

concepts and roles (as in ALCΩ) and decidability is proved by a polynomial first-order

reduction into SROIQ, which generalizes the reduction in [8] to an arbitrary number

of orders. The translation in [11] introduces axioms A′ ≡ ∃instanceOf .{cA′}, for each

atomic concept A′, axioms which are quite similar to our axiom (1), that we need for

the concepts C occurring in the knowledge base on the left hand side of membership

axioms.

In Hi(SHIQ) [6], complex concept and role expressions can occur as instances

of other concepts as in ALCΩ . A polynomial translation of Hi(SHIQ) into SHIQ is

defined and a study of the complexity of higher-order query answering is provided.

Kubincova et al. in [14] propose a Hylog-style semantics by dropping the ordering

requirement in [11] and allowing the instanceOf role, with a fixed interpretation, to

be used in axioms as any other role. The interpretation of role instanceOf does not

correspond exactly to the interpretation of e− in our translation, as we do not introduce

axiom (1) for all the concept names in NC , while we introduce it for all the (possibly

complex) concepts occurring as instances in some membership axiom.

Pan and Horrocks in [19] and Motz et al. in [17] define extensions of OWL DL

and of SHIQ (respectively), based on semantics interpreting concepts as well-founded

sets. In particular, [17] adds to SHIQ meta-modelling axioms equating individuals to

concepts, without requiring that the instances of a concept need to stay in the same layer,

and develop a tableau algorithm as an extension of the one for SHIQ.

In [9] Gu introduces the language Hi(Horn-SROIQ), an extension of Horn-SROIQ

which allows classes and roles to be used as individuals based on the ν-semantics [16].

7 https://www.w3.org/2007/OWL/wiki/Punning
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ν-satisfiability and conjunctive query answering are shown to be reducible to the corre-

sponding problems in Horn-SROIQ.

A set-theoretic approach in DLs has been adopted by Cantone et al. in [4] for deter-

mining the decidability of higher order conjunctive query answering in the description

logic DL4,×
D (where concept and role variables may occur in queries), as well as for

developing a tableau based procedure for calculating the answer sets from a DL4,×
D

knowledge base, thus providing means for dealing with several well-known ABox rea-

soning tasks.

We expect that the approach of extending ALC with Ω can be adopted as well for

more expressive DLs, which do not enjoy the finite model property. The translation

proposed in this paper could indeed be extended to such logics and its soundness could

be proved essentially as in Proposition 1. However, when the finite model property does

not hold, there may be models of the translated knowledge base KT containing domain

elements being in the relation e with infinitely many elements, and corresponding to

infinite sets. The completeness proof of Proposition 3 does not apply to this case and

we leave the study of this case for future investigation.

Other possible directions for future investigation concern: the treatment of roles

as individuals, which has not been considered as an option in ALCΩ ; restricting the se-

mantics to well-founded sets to avoid circular definitions of sets, and exploring possible

translations; translating ALCΩ into the set theory Ω, which may open to the possibility

of exploiting proof methods developed for set theories in reasoning with DLs.
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14. P. Kubincová, J. Kluka, and M. Homola. Towards expressive metamodelling with instantia-

tion. In Proc. of the 28th Int. Workshop on Description Logics, Athens, June 7-10, 2015.

15. C. Lutz and U. Sattler. The complexity of reasoning with Boolean modal logics. In Proc.

3rd Int. Conf. on Advances in Modal Logic (AiML 2000), pages 329–348, 2002.

16. B. Motik. On the properties of metamodeling in OWL. In Proc. ISWC 2005, 4th International

Semantic Web Conference, Galway, Ireland, November 6-10, 2005, pages 548–562, 2005.

17. R. Motz, E. Rohrer, and P. Severi. The description logic SHIQ with a flexible meta-modelling

hierarchy. J. Web Sem., 35:214–234, 2015.

18. E.G. Omodeo, A. Policriti, and A.I. Tomescu. On Sets and Graphs. Perspectives on Logic

and Combinatorics. Springer, DOI 10.1007/978-3-319-54981-1, 2017.

19. J.Z. Pan, I. Horrocks, and G Schreiber. OWL FA: A metamodeling extension of OWL DL.

In Proc.OWLED 2005 Workshop, Galway, Ireland, November 11-12, 2005.

20. P.F. Patel-Schneider, P.H. Hayes, and I. Horrocks. OWL Web Ontology Language; Semantics

and Abstract Syntax. In http: //www.w3.org/TR/owl-semantics/, 2002.

21. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.

Artificial Intelligence, 48(1):1–26, 1991.

22. C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94-18, Max-Plank-Institut,

1994, RPI computer Science, 1994.


